Freshmen Programming Contests 2024

Solutions presentation

By the Freshmen Programming Contests 2024 jury for:

- AAPJE in Amsterdam
- FPC in Delft
- FYPC in Eindhoven
- GAPC in Groningen

May 4, 2024

A: Annoying Alliterations

Problem Author: Maciek Sidor

- Problem: Given n words, find a pair such that after their common prefix is removed, the sum of lengths of the two resulting words is the greatest.

A: Annoying Alliterations

Problem Author: Maciek Sidor

- Problem: Given n words, find a pair such that after their common prefix is removed, the sum of lengths of the two resulting words is the greatest.
- Naive solution: Check every pair. Runs in $\mathcal{O}\left(n^{2}\right)$, too slow.

A: Annoying Alliterations

Problem Author: Maciek Sidor

- Problem: Given n words, find a pair such that after their common prefix is removed, the sum of lengths of the two resulting words is the greatest.
- Naive solution: Check every pair. Runs in $\mathcal{O}\left(n^{2}\right)$, too slow.
- Claim: For a given pair s, t and a third word v such that $|v| \geq \max (|s|,|t|)$, we can always replace one of the words and the score will not decrease.

A: Annoying Alliterations

Problem Author: Maciek Sidor

- Claim: For a given pair s, t and a third word v such that $|v| \geq \max (|s|,|t|)$, we can always replace one of the words and the score will not decrease.

A: Annoying Alliterations

- Claim: For a given pair s, t and a third word v such that $|v| \geq \max (|s|,|t|)$, we can always replace one of the words and the score will not decrease.
- Proof: Denote the common prefix of s, t as $p(s, t)$ and let $g(s, t)=|s|+|t|-2|p(s, t)|$ be our goodness function.

A: Annoying Alliterations

- Claim: For a given pair s, t and a third word v such that $|v| \geq \max (|s|,|t|)$, we can always replace one of the words and the score will not decrease.
- Proof: Denote the common prefix of s, t as $p(s, t)$ and let $g(s, t)=|s|+|t|-2|p(s, t)|$ be our goodness function.
- Suppose $g(s, t)>g(s, v)$ and $g(s, t)>g(v, t)$. Then:

A: Annoying Alliterations

- Claim: For a given pair s, t and a third word v such that $|v| \geq \max (|s|,|t|)$, we can always replace one of the words and the score will not decrease.
- Proof: Denote the common prefix of s, t as $p(s, t)$ and let $g(s, t)=|s|+|t|-2|p(s, t)|$ be our goodness function.
- Suppose $g(s, t)>g(s, v)$ and $g(s, t)>g(v, t)$. Then:

$$
|s|+|t|-2|p(s, t)|>|s|+|v|-2|p(s, v)|
$$

A: Annoying Alliterations

- Claim: For a given pair s, t and a third word v such that $|v| \geq \max (|s|,|t|)$, we can always replace one of the words and the score will not decrease.
- Proof: Denote the common prefix of s, t as $p(s, t)$ and let $g(s, t)=|s|+|t|-2|p(s, t)|$ be our goodness function.
- Suppose $g(s, t)>g(s, v)$ and $g(s, t)>g(v, t)$. Then:

$$
\begin{gathered}
|s|+|t|-2|p(s, t)|>|s|+|v|-2|p(s, v)| \\
|t|-2|p(s, t)|>|v|-2|p(s, v)|
\end{gathered}
$$

A: Annoying Alliterations

- Claim: For a given pair s, t and a third word v such that $|v| \geq \max (|s|,|t|)$, we can always replace one of the words and the score will not decrease.
- Proof: Denote the common prefix of s, t as $p(s, t)$ and let $g(s, t)=|s|+|t|-2|p(s, t)|$ be our goodness function.
- Suppose $g(s, t)>g(s, v)$ and $g(s, t)>g(v, t)$. Then:

$$
\begin{aligned}
|s|+|t|-2|p(s, t)| & >|s|+|v|-2|p(s, v)| \\
|t|-2|p(s, t)| & >|v|-2|p(s, v)| \\
|p(s, v)| & >|p(s, t)|
\end{aligned}
$$

A: Annoying Alliterations

- Claim: For a given pair s, t and a third word v such that $|v| \geq \max (|s|,|t|)$, we can always replace one of the words and the score will not decrease.
- Proof: Denote the common prefix of s, t as $p(s, t)$ and let $g(s, t)=|s|+|t|-2|p(s, t)|$ be our goodness function.
- Suppose $g(s, t)>g(s, v)$ and $g(s, t)>g(v, t)$. Then:

$$
\begin{aligned}
|s|+|t|-2|p(s, t)| & >|s|+|v|-2|p(s, v)| \\
|t|-2|p(s, t)| & >|v|-2|p(s, v)| \\
|p(s, v)| & >|p(s, t)|
\end{aligned}
$$

- Similarly, $|p(v, t)|>|p(s, t)|$, but these two together give us a contradiction.

A: Annoying Alliterations

Problem Author: Maciek Sidor

- Claim: For a given pair s, t and a third word v such that $|v| \geq \max (|s|,|t|)$, we can always replace one of the words and the score will not decrease.

A: Annoying Alliterations

Problem Author: Maciek Sidor

- Claim: For a given pair s, t and a third word v such that $|v| \geq \max (|s|,|t|)$, we can always replace one of the words and the score will not decrease.
- Therefore: Any word of maximum length is part of a valid solution.

A: Annoying Alliterations

Problem Author: Maciek Sidor

- Claim: For a given pair s, t and a third word v such that $|v| \geq \max (|s|,|t|)$, we can always replace one of the words and the score will not decrease.
- Therefore: Any word of maximum length is part of a valid solution.
- Solution: Pick any word of maximum length and check it with every other word, take the maximum result.

A: Annoying Alliterations

Problem Author: Maciek Sidor

- Claim: For a given pair s, t and a third word v such that $|v| \geq \max (|s|,|t|)$, we can always replace one of the words and the score will not decrease.
- Therefore: Any word of maximum length is part of a valid solution.
- Solution: Pick any word of maximum length and check it with every other word, take the maximum result.
- Complexity: $\mathcal{O}(n)$.

A: Annoying Alliterations

Problem Author: Maciek Sidor

- Claim: For a given pair s, t and a third word v such that $|v| \geq \max (|s|,|t|)$, we can always replace one of the words and the score will not decrease.
- Therefore: Any word of maximum length is part of a valid solution.
- Solution: Pick any word of maximum length and check it with every other word, take the maximum result.
- Complexity: $\mathcal{O}(n)$.
- Note: Can also be solved using a trie (also known as a prefix tree).

A: Annoying Alliterations

Problem Author: Maciek Sidor

- Claim: For a given pair s, t and a third word v such that $|v| \geq \max (|s|,|t|)$, we can always replace one of the words and the score will not decrease.
- Therefore: Any word of maximum length is part of a valid solution.
- Solution: Pick any word of maximum length and check it with every other word, take the maximum result.
- Complexity: $\mathcal{O}(n)$.
- Note: Can also be solved using a trie (also known as a prefix tree).

Statistics: 23 submissions, 1 accepted, 6 unknown

Problem Author: Maarten Sijm

- Problem: Given the edge length of a tetrahedron, calculate the number of spheres in the pyramid.
- Problem: Given the edge length of a tetrahedron, calculate the number of spheres in the pyramid.
- Observation: The pyramid consists of n equilateral triangles.

The number of spheres in triangle t is $T(t)=\sum_{i=1}^{t} i$.

B: Building Pyramids

Problem Author: Maarten Sijm

- Problem: Given the edge length of a tetrahedron, calculate the number of spheres in the pyramid.
- Observation: The pyramid consists of n equilateral triangles.

The number of spheres in triangle t is $T(t)=\sum_{i=1}^{t} i$.

- Slow solution: Calculate $P(n)=\sum_{i=1}^{n} T(i)$. Runs in $\mathcal{O}\left(n^{2}\right)$, too slow.

B: Building Pyramids

Problem Author: Maarten Sijm

- Problem: Given the edge length of a tetrahedron, calculate the number of spheres in the pyramid.
- Observation: The pyramid consists of n equilateral triangles.

The number of spheres in triangle t is $T(t)=\sum_{i=1}^{t} i$.

- Slow solution: Calculate $P(n)=\sum_{i=1}^{n} T(i)$. Runs in $\mathcal{O}\left(n^{2}\right)$, too slow.
- Solution: Simplify $T(t)=\frac{t \cdot(t+1)}{2}$. Now calculating $P(n)$ runs in $\mathcal{O}(n)$, accepted!
- Problem: Given the edge length of a tetrahedron, calculate the number of spheres in the pyramid.
- Observation: The pyramid consists of n equilateral triangles.

The number of spheres in triangle t is $T(t)=\sum_{i=1}^{t} i$.

- Slow solution: Calculate $P(n)=\sum_{i=1}^{n} T(i)$. Runs in $\mathcal{O}\left(n^{2}\right)$, too slow.
- Solution: Simplify $T(t)=\frac{t \cdot(t+1)}{2}$. Now calculating $P(n)$ runs in $\mathcal{O}(n)$, accepted!
- Pitfall: If t is an int, $t \cdot(t+1)$ overflows. Use 64-bit integers!
- Problem: Given the edge length of a tetrahedron, calculate the number of spheres in the pyramid.
- Observation: The pyramid consists of n equilateral triangles.

The number of spheres in triangle t is $T(t)=\sum_{i=1}^{t} i$.

- Slow solution: Calculate $P(n)=\sum_{i=1}^{n} T(i)$. Runs in $\mathcal{O}\left(n^{2}\right)$, too slow.
- Solution: Simplify $T(t)=\frac{t \cdot(t+1)}{2}$. Now calculating $P(n)$ runs in $\mathcal{O}(n)$, accepted!
- Pitfall: If t is an int, $t \cdot(t+1)$ overflows. Use 64-bit integers!
- Challenge: The calculation of $P(n)$ can even be simplified to run in $\mathcal{O}(1)$.
- Problem: Given the edge length of a tetrahedron, calculate the number of spheres in the pyramid.
- Observation: The pyramid consists of n equilateral triangles.

The number of spheres in triangle t is $T(t)=\sum_{i=1}^{t} i$.

- Slow solution: Calculate $P(n)=\sum_{i=1}^{n} T(i)$. Runs in $\mathcal{O}\left(n^{2}\right)$, too slow.
- Solution: Simplify $T(t)=\frac{t \cdot(t+1)}{2}$. Now calculating $P(n)$ runs in $\mathcal{O}(n)$, accepted!
- Pitfall: If t is an int, $t \cdot(t+1)$ overflows. Use 64-bit integers!
- Challenge: The calculation of $P(n)$ can even be simplified to run in $\mathcal{O}(1)$.

Statistics: 53 submissions, 29 accepted, 2 unknown

C: Curious Jury

Problem Author: Jeroen Op de Beek

- Problem: Given two types of penalty times for n teams $\left(1 \leq I_{i}<s_{i} \leq n\right)$, find out over all ways of choosing the type of penalty time for each team, how many fixed points the scoreboard contains in total.

C: Curious Jury

Problem Author: Jeroen Op de Beek

- Problem: Given two types of penalty times for n teams $\left(1 \leq I_{i}<s_{i} \leq n\right)$, find out over all ways of choosing the type of penalty time for each team, how many fixed points the scoreboard contains in total.
- Observation 1: Instead of finding fixed points for each out of 2^{n} options, find how many times team i is a fixed point.

C: Curious Jury

Problem Author: Jeroen Op de Beek

- Problem: Given two types of penalty times for n teams $\left(1 \leq I_{i}<s_{i} \leq n\right)$, find out over all ways of choosing the type of penalty time for each team, how many fixed points the scoreboard contains in total.
- Observation 1: Instead of finding fixed points for each out of 2^{n} options, find how many times team i is a fixed point.
- Observation 2: Loop over all teams, try both options l_{i} and s_{i} as potential fixed point, for team i, call this potential fixed point f.

C: Curious Jury

Problem Author: Jeroen Op de Beek

- Problem: Given two types of penalty times for n teams $\left(1 \leq I_{i}<s_{i} \leq n\right)$, find out over all ways of choosing the type of penalty time for each team, how many fixed points the scoreboard contains in total.
- Observation 1: Instead of finding fixed points for each out of 2^{n} options, find how many times team i is a fixed point.
- Observation 2: Loop over all teams, try both options l_{i} and s_{i} as potential fixed point, for team i, call this potential fixed point f.
- Observation 3: Other teams form 3 groups:
- A Teams with $l_{j}<f, s_{j}<f$
- B Teams with $I_{j}<f, s_{j} \geq f$
- C Teams with $l_{j} \geq f, s_{j} \geq f$

C: Curious Jury

Problem Author: Jeroen Op de Beek

- Problem: Given two types of penalty times for n teams $\left(1 \leq I_{i}<s_{i} \leq n\right)$, find out over all ways of choosing the type of penalty time for each team, how many fixed points the scoreboard contains in total.
- Observation 1: Instead of finding fixed points for each out of 2^{n} options, find how many times team i is a fixed point.
- Observation 2: Loop over all teams, try both options l_{i} and s_{i} as potential fixed point, for team i, call this potential fixed point f.
- Observation 3: Other teams form 3 groups:
- A Teams with $l_{j}<f, s_{j}<f$
- B Teams with $I_{j}<f, s_{j} \geq f$
- C Teams with $l_{j} \geq f, s_{j} \geq f$
- Observation 4: The number of ways to choose the other submission times, for team i to have a fixed point at rank $f: 2^{|A|+|C|} \cdot\binom{|B|}{f-|A|}$

C: Curious Jury

Problem Author: Jeroen Op de Beek

- Problem: Given two types of penalty times for n teams $\left(1 \leq I_{i}<s_{i} \leq n\right)$, find out over all ways of choosing the type of penalty time for each team, how many fixed points the scoreboard contains in total.
- Observation 1: Instead of finding fixed points for each out of 2^{n} options, find how many times team i is a fixed point.
- Observation 2: Loop over all teams, try both options l_{i} and s_{i} as potential fixed point, for team i, call this potential fixed point f.
- Observation 3: Other teams form 3 groups:
- A Teams with $l_{j}<f, s_{j}<f$
- B Teams with $I_{j}<f, s_{j} \geq f$
- C Teams with $l_{j} \geq f, s_{j} \geq f$
- Observation 4: The number of ways to choose the other submission times, for team i to have a fixed point at rank $f: 2^{|A|+|C|} \cdot\binom{|B|}{f-|A|}$
- Team j is in group \mathbf{A} if $s_{j}<f$.

C: Curious Jury

Problem Author: Jeroen Op de Beek

- Problem: Given two types of penalty times for n teams $\left(1 \leq I_{i}<s_{i} \leq n\right)$, find out over all ways of choosing the type of penalty time for each team, how many fixed points the scoreboard contains in total.
- Observation 1: Instead of finding fixed points for each out of 2^{n} options, find how many times team i is a fixed point.
- Observation 2: Loop over all teams, try both options l_{i} and s_{i} as potential fixed point, for team i, call this potential fixed point f.
- Observation 3: Other teams form 3 groups:
- A Teams with $l_{j}<f, s_{j}<f$
- B Teams with $I_{j}<f, s_{j} \geq f$
- C Teams with $l_{j} \geq f, s_{j} \geq f$
- Observation 4: The number of ways to choose the other submission times, for team i to have a fixed point at rank $f: 2^{|A|+|C|} \cdot\binom{|B|}{f-|A|}$
- Team j is in group \mathbf{A} if $s_{j}<f$.
- Team j is in group \mathbf{C} if $l_{j} \geq f$.

C: Curious Jury

Problem Author: Jeroen Op de Beek

- Problem: Given two types of penalty times for n teams $\left(1 \leq I_{i}<s_{i} \leq n\right)$, find out over all ways of choosing the type of penalty time for each team, how many fixed points the scoreboard contains in total.
- Observation 1: Instead of finding fixed points for each out of 2^{n} options, find how many times team i is a fixed point.
- Observation 2: Loop over all teams, try both options l_{i} and s_{i} as potential fixed point, for team i, call this potential fixed point f.
- Observation 3: Other teams form 3 groups:
- A Teams with $l_{j}<f, s_{j}<f$
- B Teams with $I_{j}<f, s_{j} \geq f$
- C Teams with $l_{j} \geq f, s_{j} \geq f$
- Observation 4: The number of ways to choose the other submission times, for team i to have a fixed point at rank $f: 2^{|A|+|C|} \cdot\binom{|B|}{f-|A|}$
- Team j is in group \mathbf{A} if $s_{j}<f$.
- Team j is in group \mathbf{C} if $l_{j} \geq f$.
- Otherwise, team j is in B. By sorting the I_{j} and s_{j} arrays, $|A|$ and $|C|$ can be found by binary search.

C: Curious Jury

Problem Author: Jeroen Op de Beek

- Problem: Given two types of penalty times for n teams $\left(1 \leq I_{i}<s_{i} \leq n\right)$, find out over all ways of choosing the type of penalty time for each team, how many fixed points the scoreboard contains in total.
- Observation 4: The number of ways to choose the other submission times, for team i to have a fixed point at rank $f: 2^{|A|+|C|} \cdot\binom{|B|}{f-|A|}$
- Need to calculate $\mathcal{O}(n)$ binomial coefficients $\binom{a}{b}$, with $0 \leq a, b \leq n:\binom{a}{b}=\frac{a!}{b!(a-b)!}$ and 2^{a} for $0 \leq a \leq n$, both $\bmod \left(10^{9}+7\right)$

C: Curious Jury

Problem Author: Jeroen Op de Beek

- Problem: Given two types of penalty times for n teams $\left(1 \leq I_{i}<s_{i} \leq n\right)$, find out over all ways of choosing the type of penalty time for each team, how many fixed points the scoreboard contains in total.
- Observation 4: The number of ways to choose the other submission times, for team i to have a fixed point at rank $f: 2^{|A|+|C|} \cdot\binom{|B|}{f-|A|}$
- Need to calculate $\mathcal{O}(n)$ binomial coefficients $\binom{a}{b}$, with $0 \leq a, b \leq n:\binom{a}{b}=\frac{a!}{b!(a-b)!}$ and 2^{a} for $0 \leq a \leq n$, both $\bmod \left(10^{9}+7\right)$
- Can precalculate factorial[$k]$ and twopower $[k]$ in $\mathcal{O}(n)$.

C: Curious Jury

Problem Author: Jeroen Op de Beek

- Problem: Given two types of penalty times for n teams $\left(1 \leq I_{i}<s_{i} \leq n\right)$, find out over all ways of choosing the type of penalty time for each team, how many fixed points the scoreboard contains in total.
- Observation 4: The number of ways to choose the other submission times, for team i to have a fixed point at rank $f: 2^{|A|+|C|} \cdot\binom{|B|}{f-|A|}$
- Need to calculate $\mathcal{O}(n)$ binomial coefficients $\binom{a}{b}$, with $0 \leq a, b \leq n:\binom{a}{b}=\frac{a!}{b!(a-b)!}$ and 2^{a} for $0 \leq a \leq n$, both $\bmod \left(10^{9}+7\right)$
- Can precalculate factorial[$k]$ and twopower $[k]$ in $\mathcal{O}(n)$.
- Can find inverse of factorial $[n]$ in $\mathcal{O}(\log (M O D)$) (or if you don't know how to calculate a modular inverse, you can bruteforce it on your own computer).

C: Curious Jury

Problem Author: Jeroen Op de Beek

- Problem: Given two types of penalty times for n teams $\left(1 \leq I_{i}<s_{i} \leq n\right)$, find out over all ways of choosing the type of penalty time for each team, how many fixed points the scoreboard contains in total.
- Observation 4: The number of ways to choose the other submission times, for team i to have a fixed point at rank $f: 2^{|A|+|C|} \cdot\binom{|B|}{f-|A|}$
- Need to calculate $\mathcal{O}(n)$ binomial coefficients $\binom{a}{b}$, with $0 \leq a, b \leq n:\binom{a}{b}=\frac{a!}{b!(a-b)!}$ and 2^{a} for $0 \leq a \leq n$, both $\bmod \left(10^{9}+7\right)$
- Can precalculate factorial[$k]$ and twopower $[k]$ in $\mathcal{O}(n)$.
- Can find inverse of factorial $[n]$ in $\mathcal{O}(\log (M O D)$) (or if you don't know how to calculate a modular inverse, you can bruteforce it on your own computer).
- Now fill the array invfactorial[k] using invfactorial $[k]=$ invfactorial $[k+1] \cdot(k+1)$ in $\mathcal{O}(n)$.
- Problem: Given two types of penalty times for n teams $\left(1 \leq I_{i}<s_{i} \leq n\right)$, find out over all ways of choosing the type of penalty time for each team, how many fixed points the scoreboard contains in total.
- Observation 4: The number of ways to choose the other submission times, for team i to have a fixed point at rank $f: 2^{|A|+|C|} \cdot\binom{|B|}{f-|A|}$
- Need to calculate $\mathcal{O}(n)$ binomial coefficients $\binom{a}{b}$, with $0 \leq a, b \leq n:\binom{a}{b}=\frac{a!}{b!(a-b)!}$ and 2^{a} for $0 \leq a \leq n$, both $\bmod \left(10^{9}+7\right)$
- Can precalculate factorial[$k]$ and twopower[$k]$ in $\mathcal{O}(n)$.
- Can find inverse of factorial $[n]$ in $\mathcal{O}(\log (M O D)$) (or if you don't know how to calculate a modular inverse, you can bruteforce it on your own computer).
- Now fill the array invfactorial[k] using invfactorial $[k]=$ invfactorial $[k+1] \cdot(k+1)$ in $\mathcal{O}(n)$.
- Complexity varying from $\mathcal{O}(n(\log (n)+\log (M O D)))$ to $\mathcal{O}(n+\log (M O D))$ depending on exact implementation.
- Problem: Given two types of penalty times for n teams $\left(1 \leq I_{i}<s_{i} \leq n\right)$, find out over all ways of choosing the type of penalty time for each team, how many fixed points the scoreboard contains in total.
- Observation 4: The number of ways to choose the other submission times, for team i to have a fixed point at rank $f: 2^{|A|+|C|} \cdot\binom{|B|}{f-|A|}$
- Need to calculate $\mathcal{O}(n)$ binomial coefficients $\binom{a}{b}$, with $0 \leq a, b \leq n:\binom{a}{b}=\frac{a!}{b!(a-b)!}$ and 2^{a} for $0 \leq a \leq n$, both $\bmod \left(10^{9}+7\right)$
- Can precalculate factorial[$k]$ and twopower $[k]$ in $\mathcal{O}(n)$.
- Can find inverse of factorial $[n]$ in $\mathcal{O}(\log (M O D)$) (or if you don't know how to calculate a modular inverse, you can bruteforce it on your own computer).
- Now fill the array invfactorial[k] using invfactorial $[k]=$ invfactorial $[k+1] \cdot(k+1)$ in $\mathcal{O}(n)$.
- Complexity varying from $\mathcal{O}(n(\log (n)+\log (M O D)))$ to $\mathcal{O}(n+\log (M O D))$ depending on exact implementation.

Statistics: 3 submissions, 0 accepted, 3 unknown

Problem Author: Wietze Koops

- Problem: Read two lines, comprised of ' R ', ' P ', and ' S ', and determine who wins the most games.

Problem Author: Wietze Koops

- Problem: Read two lines, comprised of ' R ', ' P ', and ' S ', and determine who wins the most games.
- Solution:
- Read the two lines character by character, increment a counter if player 1 wins and decrement it if player 2 wins.
- Finally, print "victory" if the counter is positive, and "defeat" if it is negative.

Problem Author: Wietze Koops

- Problem: Read two lines, comprised of ' R ', ' P ', and ' S ', and determine who wins the most games.
- Solution:
- Read the two lines character by character, increment a counter if player 1 wins and decrement it if player 2 wins.
- Finally, print "victory" if the counter is positive, and "defeat" if it is negative.
- Complexity: $\mathcal{O}(n)$.
- Problem: Read two lines, comprised of ' R ', ' P ', and ' S ', and determine who wins the most games.
- Solution:
- Read the two lines character by character, increment a counter if player 1 wins and decrement it if player 2 wins.
- Finally, print "victory" if the counter is positive, and "defeat" if it is negative.
- Complexity: $\mathcal{O}(n)$.

Statistics: 50 submissions, 34 accepted, 3 unknown

E: European Election

Problem Author: Veselin Mitev

- Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.

Problem Author: Veselin Mitev

- Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.
- Fun Fact: This is also known as the Condorcet voting method.

E: European Election

Problem Author: Veselin Mitev

- Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.
- Fun Fact: This is also known as the Condorcet voting method.
- How to determine whether candidate A is better than B ?
- Go through all ballots - count how many times A appears before B, and vice-versa. Runs in $\mathcal{O}(n \cdot k)$.

E: European Election

Problem Author: Veselin Mitev

- Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.
- Fun Fact: This is also known as the Condorcet voting method.
- How to determine whether candidate A is better than B ?
- Go through all ballots - count how many times A appears before B, and vice-versa. Runs in $\mathcal{O}(n \cdot k)$.
- Observation: We can preprocess the ballots in $\mathcal{O}(n \cdot k)$, such that we can access the position that each candidate appears in each ballot in $\mathcal{O}(1)$. Thus, answering whether candidate A beats candidate B , now only takes $\mathcal{O}(n)$.

E: European Election

Problem Author: Veselin Mitev

- Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.
- Fun Fact: This is also known as the Condorcet voting method.
- How to determine whether candidate A is better than B ?
- Go through all ballots - count how many times A appears before B, and vice-versa. Runs in $\mathcal{O}(n \cdot k)$.
- Observation: We can preprocess the ballots in $\mathcal{O}(n \cdot k)$, such that we can access the position that each candidate appears in each ballot in $\mathcal{O}(1)$. Thus, answering whether candidate A beats candidate B , now only takes $\mathcal{O}(n)$.
- Solution:
- Pick a candidate d.

E: European Election

Problem Author: Veselin Mitev

- Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.
- Fun Fact: This is also known as the Condorcet voting method.
- How to determine whether candidate A is better than B ?
- Go through all ballots - count how many times A appears before B, and vice-versa. Runs in $\mathcal{O}(n \cdot k)$.
- Observation: We can preprocess the ballots in $\mathcal{O}(n \cdot k)$, such that we can access the position that each candidate appears in each ballot in $\mathcal{O}(1)$. Thus, answering whether candidate A beats candidate B , now only takes $\mathcal{O}(n)$.
- Solution:
- Pick a candidate d.
- Go through all candidates c_{i} : Anytime c_{i} beats d : $d \leftarrow c_{i}$. Runs in $\mathcal{O}(n \cdot k)$.

Problem Author: Veselin Mitev

- Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.
- Fun Fact: This is also known as the Condorcet voting method.
- How to determine whether candidate A is better than B ?
- Go through all ballots - count how many times A appears before B, and vice-versa. Runs in $\mathcal{O}(n \cdot k)$.
- Observation: We can preprocess the ballots in $\mathcal{O}(n \cdot k)$, such that we can access the position that each candidate appears in each ballot in $\mathcal{O}(1)$. Thus, answering whether candidate A beats candidate B , now only takes $\mathcal{O}(n)$.
- Solution:
- Pick a candidate d.
- Go through all candidates c_{i} : Anytime c_{i} beats d : $d \leftarrow c_{i}$. Runs in $\mathcal{O}(n \cdot k)$.
- Observation: If the election has a winner, it must be d. (This can be proven using contradiction!)

Problem Author: Veselin Mitev

- Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.
- Fun Fact: This is also known as the Condorcet voting method.
- How to determine whether candidate A is better than B ?
- Go through all ballots - count how many times A appears before B, and vice-versa. Runs in $\mathcal{O}(n \cdot k)$.
- Observation: We can preprocess the ballots in $\mathcal{O}(n \cdot k)$, such that we can access the position that each candidate appears in each ballot in $\mathcal{O}(1)$. Thus, answering whether candidate A beats candidate B , now only takes $\mathcal{O}(n)$.
- Solution:
- Pick a candidate d.
- Go through all candidates c_{i} : Anytime c_{i} beats d : $d \leftarrow c_{i}$. Runs in $\mathcal{O}(n \cdot k)$.
- Observation: If the election has a winner, it must be d. (This can be proven using contradiction!)
- Check if d beats all other candidates. Runs in $\mathcal{O}(n \cdot k)$.

Problem Author: Veselin Mitev

- Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.
- Fun Fact: This is also known as the Condorcet voting method.
- How to determine whether candidate A is better than B ?
- Go through all ballots - count how many times A appears before B, and vice-versa. Runs in $\mathcal{O}(n \cdot k)$.
- Observation: We can preprocess the ballots in $\mathcal{O}(n \cdot k)$, such that we can access the position that each candidate appears in each ballot in $\mathcal{O}(1)$. Thus, answering whether candidate A beats candidate B , now only takes $\mathcal{O}(n)$.
- Solution:
- Pick a candidate d.
- Go through all candidates c_{i} : Anytime c_{i} beats d : $d \leftarrow c_{i}$. Runs in $\mathcal{O}(n \cdot k)$.
- Observation: If the election has a winner, it must be d. (This can be proven using contradiction!)
- Check if d beats all other candidates. Runs in $\mathcal{O}(n \cdot k)$.
- Complexity: $\mathcal{O}(n \cdot k)$.
- Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.
- Fun Fact: This is also known as the Condorcet voting method.
- How to determine whether candidate A is better than B ?
- Go through all ballots - count how many times A appears before B, and vice-versa. Runs in $\mathcal{O}(n \cdot k)$.
- Observation: We can preprocess the ballots in $\mathcal{O}(n \cdot k)$, such that we can access the position that each candidate appears in each ballot in $\mathcal{O}(1)$. Thus, answering whether candidate A beats candidate B , now only takes $\mathcal{O}(n)$.
- Solution:
- Pick a candidate d.
- Go through all candidates c_{i} : Anytime c_{i} beats d : $d \leftarrow c_{i}$. Runs in $\mathcal{O}(n \cdot k)$.
- Observation: If the election has a winner, it must be d. (This can be proven using contradiction!)
- Check if d beats all other candidates. Runs in $\mathcal{O}(n \cdot k)$.
- Complexity: $\mathcal{O}(n \cdot k)$.
- But we chose the time limit to also accept $\mathcal{O}\left(n \cdot k^{2}\right)$ or even $\mathcal{O}\left(n \cdot k^{3}\right)$.
- Problem: Given ranked-choice ballots, determine the candidate who beats all other candidates.
- Fun Fact: This is also known as the Condorcet voting method.
- How to determine whether candidate A is better than B ?
- Go through all ballots - count how many times A appears before B, and vice-versa. Runs in $\mathcal{O}(n \cdot k)$.
- Observation: We can preprocess the ballots in $\mathcal{O}(n \cdot k)$, such that we can access the position that each candidate appears in each ballot in $\mathcal{O}(1)$. Thus, answering whether candidate A beats candidate B , now only takes $\mathcal{O}(n)$.
- Solution:
- Pick a candidate d.
- Go through all candidates c_{i} : Anytime c_{i} beats d : $d \leftarrow c_{i}$. Runs in $\mathcal{O}(n \cdot k)$.
- Observation: If the election has a winner, it must be d. (This can be proven using contradiction!)
- Check if d beats all other candidates. Runs in $\mathcal{O}(n \cdot k)$.
- Complexity: $\mathcal{O}(n \cdot k)$.
- But we chose the time limit to also accept $\mathcal{O}\left(n \cdot k^{2}\right)$ or even $\mathcal{O}\left(n \cdot k^{3}\right)$.

Statistics: 29 submissions, 4 accepted, 9 unknown

F: Flag Rotation

Problem Author: Jeroen Op de Beek

- Problem: Count how many cells will change when painting the flag rotated.

Problem Author: Jeroen Op de Beek

- Problem: Count how many cells will change when painting the flag rotated.
- Observation: Since each column has to be repainted to one color, we will change $n-c n t_{c}$ cells in it (where c is the final color).
- Problem: Count how many cells will change when painting the flag rotated.
- Observation: Since each column has to be repainted to one color, we will change $n-c n t_{c}$ cells in it (where col is the final color).
- Solution: Count how many cells won't change.
- Problem: Count how many cells will change when painting the flag rotated.
- Observation: Since each column has to be repainted to one color, we will change $n-c n t_{c}$ cells in it (where c is the final color).
- Solution: Count how many cells won't change.
- First sort the array, then check for segments made of identical elements, this way we find the count of each cell color.
- Problem: Count how many cells will change when painting the flag rotated.
- Observation: Since each column has to be repainted to one color, we will change $n-c n t_{c}$ cells in it (where c is the final color).
- Solution: Count how many cells won't change.
- First sort the array, then check for segments made of identical elements, this way we find the count of each cell color.
- answer $=n^{2}-\sum_{c} c n t_{c}^{2}$
- Problem: Count how many cells will change when painting the flag rotated.
- Observation: Since each column has to be repainted to one color, we will change $n-c n t_{c}$ cells in it (where c is the final color).
- Solution: Count how many cells won't change.
- First sort the array, then check for segments made of identical elements, this way we find the count of each cell color.
- answer $=n^{2}-\sum_{c} c n t_{c}^{2}$
- Complexity: $\mathcal{O}(n \log n)$.
- Problem: Count how many cells will change when painting the flag rotated.
- Observation: Since each column has to be repainted to one color, we will change $n-c n t_{c}$ cells in it (where c is the final color).
- Solution: Count how many cells won't change.
- First sort the array, then check for segments made of identical elements, this way we find the count of each cell color.
- answer $=n^{2}-\sum_{c} c n t_{c}^{2}$
- Complexity: $\mathcal{O}(n \log n)$.
- Note: this can also be done using a (hash) map.
- Problem: Count how many cells will change when painting the flag rotated.
- Observation: Since each column has to be repainted to one color, we will change $n-c n t_{c}$ cells in it (where c is the final color).
- Solution: Count how many cells won't change.
- First sort the array, then check for segments made of identical elements, this way we find the count of each cell color.
- answer $=n^{2}-\sum_{c} c n t_{c}^{2}$
- Complexity: $\mathcal{O}(n \log n)$.
- Note: this can also be done using a (hash) map.

Statistics: 76 submissions, 20 accepted, 16 unknown

G: Galactic Expedition

Problem Author: Veselin Mitev

- Problem: Navigate between wormholes to find the ancient relic, without running out of fuel.

G: Galactic Expedition

Problem Author: Veselin Mitev

- Problem: Navigate between wormholes to find the ancient relic, without running out of fuel.
- Observation: You can refuel more than enough times to simply explore all wormholes, until you find a way to reach the relic.

G: Galactic Expedition

Problem Author: Veselin Mitev

- Problem: Navigate between wormholes to find the ancient relic, without running out of fuel.
- Observation: You can refuel more than enough times to simply explore all wormholes, until you find a way to reach the relic.
- Solution: Perform a "live" search - explore the wormholes while always keeping enough fuel ($\frac{d}{2}$) to go back to home base:

G: Galactic Expedition

Problem Author: Veselin Mitev

- Problem: Navigate between wormholes to find the ancient relic, without running out of fuel.
- Observation: You can refuel more than enough times to simply explore all wormholes, until you find a way to reach the relic.
- Solution: Perform a "live" search - explore the wormholes while always keeping enough fuel ($\frac{d}{2}$) to go back to home base:
- If you can reach the relic within the fuel limit, do that.

G: Galactic Expedition

Problem Author: Veselin Mitev

- Problem: Navigate between wormholes to find the ancient relic, without running out of fuel.
- Observation: You can refuel more than enough times to simply explore all wormholes, until you find a way to reach the relic.
- Solution: Perform a "live" search - explore the wormholes while always keeping enough fuel ($\frac{d}{2}$) to go back to home base:
- If you can reach the relic within the fuel limit, do that.
- Find the closest unexplored wormhole:
- You can do that using Dijkstra, or Floyd-Warshall.

G: Galactic Expedition

Problem Author: Veselin Mitev

- Problem: Navigate between wormholes to find the ancient relic, without running out of fuel.
- Observation: You can refuel more than enough times to simply explore all wormholes, until you find a way to reach the relic.
- Solution: Perform a "live" search - explore the wormholes while always keeping enough fuel ($\frac{d}{2}$) to go back to home base:
- If you can reach the relic within the fuel limit, do that.
- Find the closest unexplored wormhole:
- You can do that using Dijkstra, or Floyd-Warshall.
- Can we reach it while still having enough fuel to go back to home base?

G: Galactic Expedition

Problem Author: Veselin Mitev

- Problem: Navigate between wormholes to find the ancient relic, without running out of fuel.
- Observation: You can refuel more than enough times to simply explore all wormholes, until you find a way to reach the relic.
- Solution: Perform a "live" search - explore the wormholes while always keeping enough fuel ($\frac{d}{2}$) to go back to home base:
- If you can reach the relic within the fuel limit, do that.
- Find the closest unexplored wormhole:
- You can do that using Dijkstra, or Floyd-Warshall.
- Can we reach it while still having enough fuel to go back to home base?
- If yes: Go to that wormhole and update the distances between the points.

G: Galactic Expedition

Problem Author: Veselin Mitev

- Problem: Navigate between wormholes to find the ancient relic, without running out of fuel.
- Observation: You can refuel more than enough times to simply explore all wormholes, until you find a way to reach the relic.
- Solution: Perform a "live" search - explore the wormholes while always keeping enough fuel ($\frac{d}{2}$) to go back to home base:
- If you can reach the relic within the fuel limit, do that.
- Find the closest unexplored wormhole:
- You can do that using Dijkstra, or Floyd-Warshall.
- Can we reach it while still having enough fuel to go back to home base?
- If yes: Go to that wormhole and update the distances between the points.
- If no: Go back to home base and refuel.

G: Galactic Expedition

Problem Author: Veselin Mitev

- Problem: Navigate between wormholes to find the ancient relic, without running out of fuel.
- Observation: You can refuel more than enough times to simply explore all wormholes, until you find a way to reach the relic.
- Solution: Perform a "live" search - explore the wormholes while always keeping enough fuel ($\frac{d}{2}$) to go back to home base:
- If you can reach the relic within the fuel limit, do that.
- Find the closest unexplored wormhole:
- You can do that using Dijkstra, or Floyd-Warshall.
- Can we reach it while still having enough fuel to go back to home base?
- If yes: Go to that wormhole and update the distances between the points.
- If no: Go back to home base and refuel.
- Repeat.

G: Galactic Expedition

Problem Author: Veselin Mitev

- Problem: Navigate between wormholes to find the ancient relic, without running out of fuel.
- Observation: You can refuel more than enough times to simply explore all wormholes, until you find a way to reach the relic.
- Solution: Perform a "live" search - explore the wormholes while always keeping enough fuel ($\frac{d}{2}$) to go back to home base:
- If you can reach the relic within the fuel limit, do that.
- Find the closest unexplored wormhole:
- You can do that using Dijkstra, or Floyd-Warshall.
- Can we reach it while still having enough fuel to go back to home base?
- If yes: Go to that wormhole and update the distances between the points.
- If no: Go back to home base and refuel.
- Repeat.
- Worst case: We can explore all wormholes in $\frac{n}{2}$ runs.

G: Galactic Expedition

Problem Author: Veselin Mitev

- Problem: Navigate between wormholes to find the ancient relic, without running out of fuel.
- Observation: You can refuel more than enough times to simply explore all wormholes, until you find a way to reach the relic.
- Solution: Perform a "live" search - explore the wormholes while always keeping enough fuel ($\frac{d}{2}$) to go back to home base:
- If you can reach the relic within the fuel limit, do that.
- Find the closest unexplored wormhole:
- You can do that using Dijkstra, or Floyd-Warshall.
- Can we reach it while still having enough fuel to go back to home base?
- If yes: Go to that wormhole and update the distances between the points.
- If no: Go back to home base and refuel.
- Repeat.
- Worst case: We can explore all wormholes in $\frac{n}{2}$ runs.
- If we know all wormholes, it is guaranteed that we can reach the relic, if we follow an optimal path.

G: Galactic Expedition

Problem Author: Veselin Mitev

- Problem: Navigate between wormholes to find the ancient relic, without running out of fuel.
- Observation: You can refuel more than enough times to simply explore all wormholes, until you find a way to reach the relic.
- Solution: Perform a "live" search - explore the wormholes while always keeping enough fuel ($\frac{d}{2}$) to go back to home base:
- If you can reach the relic within the fuel limit, do that.
- Find the closest unexplored wormhole:
- You can do that using Dijkstra, or Floyd-Warshall.
- Can we reach it while still having enough fuel to go back to home base?
- If yes: Go to that wormhole and update the distances between the points.
- If no: Go back to home base and refuel.
- Repeat.
- Worst case: We can explore all wormholes in $\frac{n}{2}$ runs.
- If we know all wormholes, it is guaranteed that we can reach the relic, if we follow an optimal path.
- Time Complexity: $\mathcal{O}\left(n^{3}\right)$ or $\mathcal{O}\left(n^{3} \log n\right)$. Or if you're clever about how you cache the results from the Dijkstra search algorithm you can do it in $\mathcal{O}\left(n^{2}\right)$ or $\mathcal{O}\left(n^{2} \log n\right)$.

G: Galactic Expedition

Problem Author: Veselin Mitev

- Problem: Navigate between wormholes to find the ancient relic, without running out of fuel.
- Observation: You can refuel more than enough times to simply explore all wormholes, until you find a way to reach the relic.
- Solution: Perform a "live" search - explore the wormholes while always keeping enough fuel ($\frac{d}{2}$) to go back to home base:
- If you can reach the relic within the fuel limit, do that.
- Find the closest unexplored wormhole:
- You can do that using Dijkstra, or Floyd-Warshall.
- Can we reach it while still having enough fuel to go back to home base?
- If yes: Go to that wormhole and update the distances between the points.
- If no: Go back to home base and refuel.
- Repeat.
- Worst case: We can explore all wormholes in $\frac{n}{2}$ runs.
- If we know all wormholes, it is guaranteed that we can reach the relic, if we follow an optimal path.
- Time Complexity: $\mathcal{O}\left(n^{3}\right)$ or $\mathcal{O}\left(n^{3} \log n\right)$. Or if you're clever about how you cache the results from the Dijkstra search algorithm you can do it in $\mathcal{O}\left(n^{2}\right)$ or $\mathcal{O}\left(n^{2} \log n\right)$.

Statistics: 0 submissions, 0 accepted

Problem Author: Jeroen Op de Beek

- Problem: Calculate the value of the function sum, which uses values instead of indices.

H: Horrendous Mistake

Problem Author: Jeroen Op de Beek

- Problem: Calculate the value of the function sum, which uses values instead of indices.
- Naive solution: Simply run the function after every update. This takes $\mathcal{O}(n \cdot q)$ time, too slow!

H: Horrendous Mistake

Problem Author: Jeroen Op de Beek

- Problem: Calculate the value of the function sum, which uses values instead of indices.
- Naive solution: Simply run the function after every update. This takes $\mathcal{O}(n \cdot q)$ time, too slow!
- Observation: To be fast enough, every query must be processed in $\mathcal{O}(1)$.

H: Horrendous Mistake

Problem Author: Jeroen Op de Beek

- Problem: Calculate the value of the function sum, which uses values instead of indices.
- Naive solution: Simply run the function after every update. This takes $\mathcal{O}(n \cdot q)$ time, too slow!
- Observation: To be fast enough, every query must be processed in $\mathcal{O}(1)$.
- Solution: Do some extra bookkeeping:
- Count how often every value occurs in the initial array ($=c_{x}$ for every $0 \leq x<n$).

H: Horrendous Mistake

Problem Author: Jeroen Op de Beek

- Problem: Calculate the value of the function sum, which uses values instead of indices.
- Naive solution: Simply run the function after every update. This takes $\mathcal{O}(n \cdot q)$ time, too slow!
- Observation: To be fast enough, every query must be processed in $\mathcal{O}(1)$.
- Solution: Do some extra bookkeeping:
- Count how often every value occurs in the initial array ($=c_{x}$ for every $0 \leq x<n$).
- Calculate the value of sum for the initial array and store this.

H: Horrendous Mistake

Problem Author: Jeroen Op de Beek

- Problem: Calculate the value of the function sum, which uses values instead of indices.
- Naive solution: Simply run the function after every update. This takes $\mathcal{O}(n \cdot q)$ time, too slow!
- Observation: To be fast enough, every query must be processed in $\mathcal{O}(1)$.
- Solution: Do some extra bookkeeping:
- Count how often every value occurs in the initial array ($=c_{x}$ for every $0 \leq x<n$).
- Calculate the value of sum for the initial array and store this.
- For every update (x, v) (let the old value in the array be $v_{\text {old }}$):
- Decrement $c_{v_{\text {old }}}$
- Subtract $c_{x} \cdot v_{\text {old }}+a_{v_{\text {old }}}$ and add $c_{X} \cdot v+a_{v}$ to the stored value of sum.
- Increment c_{v}.
- Update the value in the array.

H: Horrendous Mistake

Problem Author: Jeroen Op de Beek

- Problem: Calculate the value of the function sum, which uses values instead of indices.
- Naive solution: Simply run the function after every update. This takes $\mathcal{O}(n \cdot q)$ time, too slow!
- Observation: To be fast enough, every query must be processed in $\mathcal{O}(1)$.
- Solution: Do some extra bookkeeping:
- Count how often every value occurs in the initial array ($=c_{x}$ for every $0 \leq x<n$).
- Calculate the value of sum for the initial array and store this.
- For every update (x, v) (let the old value in the array be $v_{\text {old }}$):
- Decrement $c_{v_{\text {old }}}$
- Subtract $c_{x} \cdot v_{\text {old }}+a_{v_{\text {old }}}$ and add $c_{x} \cdot v+a_{v}$ to the stored value of sum.
- Increment c_{v}.
- Update the value in the array.
- Complexity: $\mathcal{O}(n+q)$.

H: Horrendous Mistake

Problem Author: Jeroen Op de Beek

- Problem: Calculate the value of the function sum, which uses values instead of indices.
- Naive solution: Simply run the function after every update. This takes $\mathcal{O}(n \cdot q)$ time, too slow!
- Observation: To be fast enough, every query must be processed in $\mathcal{O}(1)$.
- Solution: Do some extra bookkeeping:
- Count how often every value occurs in the initial array ($=c_{x}$ for every $0 \leq x<n$).
- Calculate the value of sum for the initial array and store this.
- For every update (x, v) (let the old value in the array be $v_{\text {old }}$):
- Decrement $c_{v_{\text {old }}}$
- Subtract $c_{x} \cdot v_{\text {old }}+a_{v_{\text {old }}}$ and add $c_{x} \cdot v+a_{v}$ to the stored value of sum.
- Increment c_{v}.
- Update the value in the array.
- Complexity: $\mathcal{O}(n+q)$.
- Pitfall: Beware of int overflow, be sure to use 64-bit integers!

H: Horrendous Mistake

Problem Author: Jeroen Op de Beek

- Problem: Calculate the value of the function sum, which uses values instead of indices.
- Naive solution: Simply run the function after every update. This takes $\mathcal{O}(n \cdot q)$ time, too slow!
- Observation: To be fast enough, every query must be processed in $\mathcal{O}(1)$.
- Solution: Do some extra bookkeeping:
- Count how often every value occurs in the initial array ($=c_{x}$ for every $0 \leq x<n$).
- Calculate the value of sum for the initial array and store this.
- For every update (x, v) (let the old value in the array be $v_{\text {old }}$):
- Decrement $c_{v_{\text {old }}}$.
- Subtract $c_{x} \cdot v_{\text {old }}+a_{v_{\text {old }}}$ and add $c_{x} \cdot v+a_{v}$ to the stored value of sum.
- Increment c_{v}.
- Update the value in the array.
- Complexity: $\mathcal{O}(n+q)$.
- Pitfall: Beware of int overflow, be sure to use 64-bit integers!

Statistics: 59 submissions, 6 accepted, 9 unknown

Problem Author: Makar Kuleshov

- Problem: Calculate the value of the implication $a_{l} \rightarrow a_{l+1} \rightarrow \ldots \rightarrow a_{r}$ for many subarrays.
- Problem: Calculate the value of the implication $a_{l} \rightarrow a_{l+1} \rightarrow \ldots \rightarrow a_{r}$ for many subarrays.
- Naive solution: Go through the whole subarray to calculate the result. Runs in $\mathcal{O}(n \cdot q)$, too slow!
- Problem: Calculate the value of the implication $a_{l} \rightarrow a_{l+1} \rightarrow \ldots \rightarrow a_{r}$ for many subarrays.
- Naive solution: Go through the whole subarray to calculate the result. Runs in $\mathcal{O}(n \cdot q)$, too slow!
- Observation: When the right argument of an implication is 1 , the result is always equal to 1 . So, we can look only at the last 1 in the subarray and the following zeros.

I: Intelligence Exploration

Problem Author: Makar Kuleshov

- Problem: Calculate the value of the implication $a_{l} \rightarrow a_{l+1} \rightarrow \ldots \rightarrow a_{r}$ for many subarrays.
- Naive solution: Go through the whole subarray to calculate the result. Runs in $\mathcal{O}(n \cdot q)$, too slow!
- Observation: When the right argument of an implication is 1 , the result is always equal to 1 . So, we can look only at the last 1 in the subarray and the following zeros.
$a_{l} \rightarrow \ldots \rightarrow 1=1$

I: Intelligence Exploration

Problem Author: Makar Kuleshov

- Problem: Calculate the value of the implication $a_{l} \rightarrow a_{l+1} \rightarrow \ldots \rightarrow a_{r}$ for many subarrays.
- Naive solution: Go through the whole subarray to calculate the result. Runs in $\mathcal{O}(n \cdot q)$, too slow!
- Observation: When the right argument of an implication is 1 , the result is always equal to 1 . So, we can look only at the last 1 in the subarray and the following zeros.
$\underbrace{a_{l} \rightarrow \ldots \rightarrow 1}_{1} \rightarrow 0=0$

I: Intelligence Exploration

Problem Author: Makar Kuleshov

- Problem: Calculate the value of the implication $a_{l} \rightarrow a_{l+1} \rightarrow \ldots \rightarrow a_{r}$ for many subarrays.
- Naive solution: Go through the whole subarray to calculate the result. Runs in $\mathcal{O}(n \cdot q)$, too slow!
- Observation: When the right argument of an implication is 1 , the result is always equal to 1 . So, we can look only at the last 1 in the subarray and the following zeros.
$\underbrace{a_{l} \rightarrow \ldots \rightarrow 1 \rightarrow 0}_{0} \rightarrow 0=1$

I: Intelligence Exploration

Problem Author: Makar Kuleshov

- Problem: Calculate the value of the implication $a_{l} \rightarrow a_{l+1} \rightarrow \ldots \rightarrow a_{r}$ for many subarrays.
- Naive solution: Go through the whole subarray to calculate the result. Runs in $\mathcal{O}(n \cdot q)$, too slow!
- Observation: When the right argument of an implication is 1 , the result is always equal to 1 . So, we can look only at the last 1 in the subarray and the following zeros.
$\underbrace{a_{l} \rightarrow \ldots \rightarrow 1 \rightarrow 0 \rightarrow 0}_{1} \rightarrow 0=0$

I: Intelligence Exploration

Problem Author: Makar Kuleshov

- Problem: Calculate the value of the implication $a_{l} \rightarrow a_{l+1} \rightarrow \ldots \rightarrow a_{r}$ for many subarrays.
- Naive solution: Go through the whole subarray to calculate the result. Runs in $\mathcal{O}(n \cdot q)$, too slow!
- Observation: When the right argument of an implication is 1 , the result is always equal to 1 . So, we can look only at the last 1 in the subarray and the following zeros.
$a_{l} \rightarrow \ldots \rightarrow 1 \rightarrow \underbrace{0 \rightarrow \ldots \rightarrow 0}_{k \text { zeros }}$
If k is even then the result equals 1 . If k is odd then the result equals 0 .

I: Intelligence Exploration

Problem Author: Makar Kuleshov

- Problem: Calculate the value of the implication $a_{l} \rightarrow a_{l+1} \rightarrow \ldots \rightarrow a_{r}$ for many subarrays.
- Naive solution: Go through the whole subarray to calculate the result. Runs in $\mathcal{O}(n \cdot q)$, too slow!
- Observation: When the right argument of an implication is 1 , the result is always equal to 1 . So, we can look only at the last 1 in the subarray and the following zeros.
$a_{l} \rightarrow \ldots \rightarrow 1 \rightarrow \underbrace{0 \rightarrow \ldots \rightarrow 0}_{k \text { zeros }}$
If k is even then the result equals 1 .
If k is odd then the result equals 0 .
- Solution: For each position precompute the index of the last 1 appearing not after it. This way you can determine the number of zeros in the end of a subarray in $\mathcal{O}(1)$.

I: Intelligence Exploration

Problem Author: Makar Kuleshov

- Problem: Calculate the value of the implication $a_{l} \rightarrow a_{l+1} \rightarrow \ldots \rightarrow a_{r}$ for many subarrays.
- Naive solution: Go through the whole subarray to calculate the result. Runs in $\mathcal{O}(n \cdot q)$, too slow!
- Observation: When the right argument of an implication is 1 , the result is always equal to 1 . So, we can look only at the last 1 in the subarray and the following zeros.
$a_{l} \rightarrow \ldots \rightarrow 1 \rightarrow \underbrace{0 \rightarrow \ldots \rightarrow 0}_{k \text { zeros }}$
If k is even then the result equals 1 .
If k is odd then the result equals 0 .
- Solution: For each position precompute the index of the last 1 appearing not after it.

This way you can determine the number of zeros in the end of a subarray in $\mathcal{O}(1)$.

- Complexity: $\mathcal{O}(n+q)$
- Problem: Calculate the value of the implication $a_{l} \rightarrow a_{l+1} \rightarrow \ldots \rightarrow a_{r}$ for many subarrays.
- Naive solution: Go through the whole subarray to calculate the result. Runs in $\mathcal{O}(n \cdot q)$, too slow!
- Observation: When the right argument of an implication is 1 , the result is always equal to 1 . So, we can look only at the last 1 in the subarray and the following zeros.
$a_{l} \rightarrow \ldots \rightarrow 1 \rightarrow \underbrace{0 \rightarrow \ldots \rightarrow 0}_{k \text { zeros }}$
If k is even then the result equals 1 .
If k is odd then the result equals 0 .
- Solution: For each position precompute the index of the last 1 appearing not after it.

This way you can determine the number of zeros in the end of a subarray in $\mathcal{O}(1)$.

- Complexity: $\mathcal{O}(n+q)$

Statistics: 76 submissions, 3 accepted, 33 unknown

- Problem: Escape from a $w \times h$ grid jail where you can go up only if you have a ladder. Ladders can be carried to a different place on the same storey.
- Problem: Escape from a $w \times h$ grid jail where you can go up only if you have a ladder. Ladders can be carried to a different place on the same storey.
- Observation: If we know to which holes a ladder can be carried, then for each cell, we know which cell we can move to.
- Problem: Escape from a $w \times h$ grid jail where you can go up only if you have a ladder. Ladders can be carried to a different place on the same storey.
- Observation: If we know to which holes a ladder can be carried, then for each cell, we know which cell we can move to.
- Solution:
- Using a for loop in both directions, determine which cells can access a ladder.
- Problem: Escape from a $w \times h$ grid jail where you can go up only if you have a ladder. Ladders can be carried to a different place on the same storey.
- Observation: If we know to which holes a ladder can be carried, then for each cell, we know which cell we can move to.
- Solution:
- Using a for loop in both directions, determine which cells can access a ladder.
- Then we know for each cell to which cell we can move.
- Hence, we can define a graph representing the grid.
- Problem: Escape from a $w \times h$ grid jail where you can go up only if you have a ladder. Ladders can be carried to a different place on the same storey.
- Observation: If we know to which holes a ladder can be carried, then for each cell, we know which cell we can move to.
- Solution:
- Using a for loop in both directions, determine which cells can access a ladder.
- Then we know for each cell to which cell we can move.
- Hence, we can define a graph representing the grid.
- Determining whether a path exists from the starting cell to an exit can be done using $\mathcal{O}(w h)$ BFS/DFS.
- Problem: Escape from a $w \times h$ grid jail where you can go up only if you have a ladder. Ladders can be carried to a different place on the same storey.
- Observation: If we know to which holes a ladder can be carried, then for each cell, we know which cell we can move to.
- Solution:
- Using a for loop in both directions, determine which cells can access a ladder.
- Then we know for each cell to which cell we can move.
- Hence, we can define a graph representing the grid.
- Determining whether a path exists from the starting cell to an exit can be done using $\mathcal{O}(w h)$ BFS/DFS.

Statistics: 18 submissions, 0 accepted, 16 unknown

Problem Author: Leon van der Waal

- Problem: A kangeroo jumps from x to $x+x(x-1)=x^{2}$ in one step. How many steps until it reaches 1 ?
- Problem: A kangeroo jumps from x to $x+x(x-1)=x^{2}$ in one step. How many steps until it reaches 1?
- Notice that when a kangeroo jumps over the n-th segment, it jumps to $x^{2} \bmod n$.
- Problem: A kangeroo jumps from x to $x+x(x-1)=x^{2}$ in one step. How many steps until it reaches 1?
- Notice that when a kangeroo jumps over the n-th segment, it jumps to $x^{2} \bmod n$.
- So after i jumps, the kangeroo is in segment $x^{2^{i}} \bmod n$.
- Problem: A kangeroo jumps from x to $x+x(x-1)=x^{2}$ in one step. How many steps until it reaches 1?
- Notice that when a kangeroo jumps over the n-th segment, it jumps to $x^{2} \bmod n$.
- So after i jumps, the kangeroo is in segment $x^{2^{i}} \bmod n$.
- Therefore we need to determine the first i such that $x^{2^{i}} \equiv 1 \bmod n$.
- Problem: Determine the first i such that $x^{2^{i}} \equiv 1 \bmod n$.
- Problem: Determine the first i such that $x^{2^{i}} \equiv 1 \bmod n$.
- Observation: If $\operatorname{gcd}(x, n) \neq 1$, then $\operatorname{gcd}(x, n) \mid x^{2^{i}} \bmod n$, so the kangeroo will never reach 1 .
- Problem: Determine the first i such that $x^{2^{i}} \equiv 1 \bmod n$.
- Observation: If $\operatorname{gcd}(x, n) \neq 1$, then $\operatorname{gcd}(x, n) \mid x^{2^{i}} \bmod n$, so the kangeroo will never reach 1 .
- Otherwise, $x^{r} \equiv 1 \bmod n$ for some r. We call the smallest such r the order of $x \bmod n$.
- Problem: Determine the first i such that $x^{2^{i}} \equiv 1 \bmod n$.
- Observation: If $\operatorname{gcd}(x, n) \neq 1$, then $\operatorname{gcd}(x, n) \mid x^{2^{i}} \bmod n$, so the kangeroo will never reach 1 .
- Otherwise, $x^{r} \equiv 1 \bmod n$ for some r. We call the smallest such r the order of $x \bmod n$.
- Notice that the powers of x repeat every r-th power:

$$
1, x, x^{2}, x^{3}, \ldots, x^{r-1}, x^{r}=1, x^{r+1}=x, x^{2}, x^{3}, \ldots
$$

- Problem: What is the first i such that $x^{2^{i}} \equiv 1 \bmod n$.
- Therefore, any i that satisfies $x^{2^{i}} \equiv 1 \bmod n$ also satisfies $2^{i} \equiv 0 \bmod r$.
- Problem: What is the first i such that $x^{2^{i}} \equiv 1 \bmod n$.
- Therefore, any i that satisfies $x^{2^{i}} \equiv 1 \bmod n$ also satisfies $2^{i} \equiv 0 \bmod r$.
- Observation: This means that r is a divisor of 2^{i}, and thus $r=2^{k}$ for some k.
- Problem: What is the first i such that $x^{2^{i}} \equiv 1 \bmod n$.
- Therefore, any i that satisfies $x^{2^{i}} \equiv 1 \bmod n$ also satisfies $2^{i} \equiv 0 \bmod r$.
- Observation: This means that r is a divisor of 2^{i}, and thus $r=2^{k}$ for some k.
- Therefore, the answer to the problem is k.
- Problem: What is the first i such that $x^{2^{i}} \equiv 1 \bmod n$.
- Therefore, any i that satisfies $x^{2^{i}} \equiv 1 \bmod n$ also satisfies $2^{i} \equiv 0 \bmod r$.
- Observation: This means that r is a divisor of 2^{i}, and thus $r=2^{k}$ for some k.
- Therefore, the answer to the problem is k.
- Observation: $r \leq n$, so $k \leq \log _{2}(n)$
- Problem: What is the first i such that $x^{2^{i}} \equiv 1 \bmod n$.
- Observation: $r \leq n$, so $k \leq \log _{2}(n)$
- Problem: What is the first i such that $x^{2^{i}} \equiv 1 \bmod n$.
- Observation: $r \leq n$, so $k \leq \log _{2}(n)$
- Solution: It therefore suffices to check the first $\log _{2}(n)<60$ jumps. If the kangeroo has not reached segment 1 by then, it never will.
- Problem: What is the first i such that $x^{2^{i}} \equiv 1 \bmod n$.
- Observation: $r \leq n$, so $k \leq \log _{2}(n)$
- Solution: It therefore suffices to check the first $\log _{2}(n)<60$ jumps. If the kangeroo has not reached segment 1 by then, it never will.
- Complexity: $\mathcal{O}(q \log n)$
- Problem: What is the first i such that $x^{2^{i}} \equiv 1 \bmod n$.
- Observation: $r \leq n$, so $k \leq \log _{2}(n)$
- Solution: It therefore suffices to check the first $\log _{2}(n)<60$ jumps. If the kangeroo has not reached segment 1 by then, it never will.
- Complexity: $\mathcal{O}(q \log n)$

Statistics: 49 submissions, 0 accepted, 29 unknown

Want to solve the problems you could not finish? Or have friends that like to solve algorithmic problems?
https://fpcs2024.bapc.eu/

Friday 10 May 2024 13:00-17:00

Language stats

Random facts

Jury work

- 447 commits (last year: 361)

[^0]
Random facts

Jury work

- 447 commits (last year: 361)
- 357 secret test cases (last year: 339)

[^1]
Random facts

Jury work

- 447 commits (last year: 361)
- 357 secret test cases (last year: 339)
- 120 accepted jury/proofreader solutions (last year: 96)

[^2]
Random facts

Jury work

- 447 commits (last year: 361)
- 357 secret test cases (last year: 339)
- 120 accepted jury/proofreader solutions (last year: 96)
- The minimum ${ }^{1}$ number of lines the jury needed to solve all problems is

$$
2+1+11+1+5+1+22+5+3+11+4=66
$$

On average 6.0 lines per problem, down from 6.4 last year

[^3]- Arnoud van der Leer (TU Delft)
- Daniel Cortild (RU Groningen)
- Davina van Meer (Delft)
- Henk van der Laan (TU Eindhoven)
- Matei Tinca (VU Amsterdam, Q)
- Michael Vasseur
(VU Amsterdam / DOMjudge)
- Mylène Martodihardjo (VU Amsterdam)
- Nicky Gerritsen
(TU Eindhoven / DOMjudge)
- Pavel Kunyavskiy
(JetBrains Amsterdam, Kotlin Hero Q)
- Ragnar Groot Koerkamp
(ETH Zürich / NWERC jury)
- Rick Wouters (TU Eindhoven)
- Sièna van Schaick (Radboud Nijmegen)
- Thomas Verwoerd
(TU Delft, 区Kotlin Hero Q)
- Yoshi van den Akker (TU Delft)

Thanks to the Jury for the
Freshmen Programming Contests:

- Angel Karchev (TU Delft)
- Ivan Bliznets (RU Groningen)
- Jeroen Op de Beek (TU Delft)
- Leon van der Waal (TU Delft)
- Maarten Sijm (TU Delft)
- Maciek Sidor (VU Amsterdam)
- Makar Kuleshov (TU Delft)
- Mansur Nurmukhambetov (RU Groningen)
- Tymon Cichocki (TU Delft)
- Veselin Mitev (TU Delft)
- Vitor Greati (RU Groningen)
- Wietze Koops (Radboud Nijmegen / RU Groningen)
- Wiktor Cupiał (TU Delft)

[^0]: ${ }^{1}$ After codegolfing

[^1]: ${ }^{1}$ After codegolfing

[^2]: ${ }^{1}$ After codegolfing

[^3]: ${ }^{1}$ After codegolfing

