
Freshmen Programming Contests 2025

Solutions presentation

By the Freshmen Programming Contests 2025 jury for:
• AAPJE in Amsterdam
• FPC in Delft
• FYPC in Eindhoven
• GAPC in Groningen
• Contest in Mons

May 3, 2025

GAPC 2025

Please do not post the problems online

Other universities will have their contests in the coming weeks.

Please, do not post/discuss the problems online before

Saturday 17 May 2025 at 17:00

G: Gambler’s Dilemma
Problem author: Wietze Koops

Problem: Determine whether two playing cards have any of the four given properties.

Solution: For each property, check whether the cards match it.
Pitfall: Be careful of off-by-one errors when calculating the rank of a card.

Running time: O(1).

Statistics: 54 submissions, 23 accepted

G: Gambler’s Dilemma
Problem author: Wietze Koops

Problem: Determine whether two playing cards have any of the four given properties.
Solution: For each property, check whether the cards match it.

Pitfall: Be careful of off-by-one errors when calculating the rank of a card.
Running time: O(1).

Statistics: 54 submissions, 23 accepted

G: Gambler’s Dilemma
Problem author: Wietze Koops

Problem: Determine whether two playing cards have any of the four given properties.
Solution: For each property, check whether the cards match it.

Pitfall: Be careful of off-by-one errors when calculating the rank of a card.

Running time: O(1).

Statistics: 54 submissions, 23 accepted

G: Gambler’s Dilemma
Problem author: Wietze Koops

Problem: Determine whether two playing cards have any of the four given properties.
Solution: For each property, check whether the cards match it.

Pitfall: Be careful of off-by-one errors when calculating the rank of a card.
Running time: O(1).

Statistics: 54 submissions, 23 accepted

G: Gambler’s Dilemma
Problem author: Wietze Koops

Problem: Determine whether two playing cards have any of the four given properties.
Solution: For each property, check whether the cards match it.

Pitfall: Be careful of off-by-one errors when calculating the rank of a card.
Running time: O(1).

Statistics: 54 submissions, 23 accepted

B: Bakfiets
Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.

Observation 1: The bottle packaging can be in two possible orientations.
Observation 2: You can have at most 1018 bottles, hence we need 64-bit integers.

Solution:
Running time: O(1).

Statistics: 49 submissions, 21 accepted, 1 unknown

B: Bakfiets
Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.
Observation 1: The bottle packaging can be in two possible orientations.

Observation 2: You can have at most 1018 bottles, hence we need 64-bit integers.
Solution:

Running time: O(1).

Statistics: 49 submissions, 21 accepted, 1 unknown

B: Bakfiets
Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.
Observation 1: The bottle packaging can be in two possible orientations.
Observation 2: You can have at most 1018 bottles, hence we need 64-bit integers.

Solution:
Running time: O(1).

Statistics: 49 submissions, 21 accepted, 1 unknown

B: Bakfiets
Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.
Observation 1: The bottle packaging can be in two possible orientations.
Observation 2: You can have at most 1018 bottles, hence we need 64-bit integers.

Solution: Compute w · h − max(min (w , a) · min (h, b), min (w , b) · min (h, a)).

Running time: O(1).

Statistics: 49 submissions, 21 accepted, 1 unknown

B: Bakfiets
Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.
Observation 1: The bottle packaging can be in two possible orientations.
Observation 2: You can have at most 1018 bottles, hence we need 64-bit integers.

Solution: Compute w · h − max(min (w , a) · min (h, b), min (w , b) · min (h, a)).

Running time: O(1).

Statistics: 49 submissions, 21 accepted, 1 unknown

B: Bakfiets
Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.
Observation 1: The bottle packaging can be in two possible orientations.
Observation 2: You can have at most 1018 bottles, hence we need 64-bit integers.

Solution: Compute w · h − max(min (w , a) · min (h, b), min (w , b) · min (h, a)).

Running time: O(1).

Statistics: 49 submissions, 21 accepted, 1 unknown

B: Bakfiets
Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.
Observation 1: The bottle packaging can be in two possible orientations.
Observation 2: You can have at most 1018 bottles, hence we need 64-bit integers.

Solution: Compute w · h − max(min (w , a) · min (h, b), min (w , b) · min (h, a)).

Running time: O(1).

Statistics: 49 submissions, 21 accepted, 1 unknown

B: Bakfiets
Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.
Observation 1: The bottle packaging can be in two possible orientations.
Observation 2: You can have at most 1018 bottles, hence we need 64-bit integers.

Solution: Compute w · h − max(min (w , a) · min (h, b), min (w , b) · min (h, a)).
Running time: O(1).

Statistics: 49 submissions, 21 accepted, 1 unknown

B: Bakfiets
Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.
Observation 1: The bottle packaging can be in two possible orientations.
Observation 2: You can have at most 1018 bottles, hence we need 64-bit integers.

Solution: Compute w · h − max(min (w , a) · min (h, b), min (w , b) · min (h, a)).
Running time: O(1).

Statistics: 49 submissions, 21 accepted, 1 unknown

H: Hopelessly Hungover
Problem author: Wietze Koops

Problem: Each weekday you can learn k facts, each day in the weekend you forget m facts.
Given a starting day of the week, how many days do you need to wait before you know
all n facts?

Observation 1: The input limits are very small, all integers are up to a 1000.
Observation 2: In the worstcase in which we can eventually know n facts, the net effect of one week is

adding 1 fact. So after 7n + O(1) days we can give up.
Solution: We can simulate the process for 7n + 14 days. Whenever the number of facts is n we

stop. After 7n + 14 days we can be sure that we will never learn all n facts.
Fun fact: The actual maximum number of days you have to wait is 6976.

Running time: O(7n) (the 7 is to signify the dependence on the number of days in the week).
Pitfall: It is possible to solve this problem in O(1) by case-working on the ending day, and

using formulas involving ceil division. This solution is prone to mistakes.

Statistics: 53 submissions, 14 accepted

H: Hopelessly Hungover
Problem author: Wietze Koops

Problem: Each weekday you can learn k facts, each day in the weekend you forget m facts.
Given a starting day of the week, how many days do you need to wait before you know
all n facts?

Observation 1: The input limits are very small, all integers are up to a 1000.

Observation 2: In the worstcase in which we can eventually know n facts, the net effect of one week is
adding 1 fact. So after 7n + O(1) days we can give up.

Solution: We can simulate the process for 7n + 14 days. Whenever the number of facts is n we
stop. After 7n + 14 days we can be sure that we will never learn all n facts.

Fun fact: The actual maximum number of days you have to wait is 6976.
Running time: O(7n) (the 7 is to signify the dependence on the number of days in the week).

Pitfall: It is possible to solve this problem in O(1) by case-working on the ending day, and
using formulas involving ceil division. This solution is prone to mistakes.

Statistics: 53 submissions, 14 accepted

H: Hopelessly Hungover
Problem author: Wietze Koops

Problem: Each weekday you can learn k facts, each day in the weekend you forget m facts.
Given a starting day of the week, how many days do you need to wait before you know
all n facts?

Observation 1: The input limits are very small, all integers are up to a 1000.
Observation 2: In the worstcase in which we can eventually know n facts, the net effect of one week is

adding 1 fact. So after 7n + O(1) days we can give up.

Solution: We can simulate the process for 7n + 14 days. Whenever the number of facts is n we
stop. After 7n + 14 days we can be sure that we will never learn all n facts.

Fun fact: The actual maximum number of days you have to wait is 6976.
Running time: O(7n) (the 7 is to signify the dependence on the number of days in the week).

Pitfall: It is possible to solve this problem in O(1) by case-working on the ending day, and
using formulas involving ceil division. This solution is prone to mistakes.

Statistics: 53 submissions, 14 accepted

H: Hopelessly Hungover
Problem author: Wietze Koops

Problem: Each weekday you can learn k facts, each day in the weekend you forget m facts.
Given a starting day of the week, how many days do you need to wait before you know
all n facts?

Observation 1: The input limits are very small, all integers are up to a 1000.
Observation 2: In the worstcase in which we can eventually know n facts, the net effect of one week is

adding 1 fact. So after 7n + O(1) days we can give up.
Solution: We can simulate the process for 7n + 14 days. Whenever the number of facts is n we

stop. After 7n + 14 days we can be sure that we will never learn all n facts.

Fun fact: The actual maximum number of days you have to wait is 6976.
Running time: O(7n) (the 7 is to signify the dependence on the number of days in the week).

Pitfall: It is possible to solve this problem in O(1) by case-working on the ending day, and
using formulas involving ceil division. This solution is prone to mistakes.

Statistics: 53 submissions, 14 accepted

H: Hopelessly Hungover
Problem author: Wietze Koops

Problem: Each weekday you can learn k facts, each day in the weekend you forget m facts.
Given a starting day of the week, how many days do you need to wait before you know
all n facts?

Observation 1: The input limits are very small, all integers are up to a 1000.
Observation 2: In the worstcase in which we can eventually know n facts, the net effect of one week is

adding 1 fact. So after 7n + O(1) days we can give up.
Solution: We can simulate the process for 7n + 14 days. Whenever the number of facts is n we

stop. After 7n + 14 days we can be sure that we will never learn all n facts.
Fun fact: The actual maximum number of days you have to wait is 6976.

Running time: O(7n) (the 7 is to signify the dependence on the number of days in the week).
Pitfall: It is possible to solve this problem in O(1) by case-working on the ending day, and

using formulas involving ceil division. This solution is prone to mistakes.

Statistics: 53 submissions, 14 accepted

H: Hopelessly Hungover
Problem author: Wietze Koops

Problem: Each weekday you can learn k facts, each day in the weekend you forget m facts.
Given a starting day of the week, how many days do you need to wait before you know
all n facts?

Observation 1: The input limits are very small, all integers are up to a 1000.
Observation 2: In the worstcase in which we can eventually know n facts, the net effect of one week is

adding 1 fact. So after 7n + O(1) days we can give up.
Solution: We can simulate the process for 7n + 14 days. Whenever the number of facts is n we

stop. After 7n + 14 days we can be sure that we will never learn all n facts.
Fun fact: The actual maximum number of days you have to wait is 6976.

Running time: O(7n) (the 7 is to signify the dependence on the number of days in the week).

Pitfall: It is possible to solve this problem in O(1) by case-working on the ending day, and
using formulas involving ceil division. This solution is prone to mistakes.

Statistics: 53 submissions, 14 accepted

H: Hopelessly Hungover
Problem author: Wietze Koops

Problem: Each weekday you can learn k facts, each day in the weekend you forget m facts.
Given a starting day of the week, how many days do you need to wait before you know
all n facts?

Observation 1: The input limits are very small, all integers are up to a 1000.
Observation 2: In the worstcase in which we can eventually know n facts, the net effect of one week is

adding 1 fact. So after 7n + O(1) days we can give up.
Solution: We can simulate the process for 7n + 14 days. Whenever the number of facts is n we

stop. After 7n + 14 days we can be sure that we will never learn all n facts.
Fun fact: The actual maximum number of days you have to wait is 6976.

Running time: O(7n) (the 7 is to signify the dependence on the number of days in the week).
Pitfall: It is possible to solve this problem in O(1) by case-working on the ending day, and

using formulas involving ceil division. This solution is prone to mistakes.

Statistics: 53 submissions, 14 accepted

H: Hopelessly Hungover
Problem author: Wietze Koops

Problem: Each weekday you can learn k facts, each day in the weekend you forget m facts.
Given a starting day of the week, how many days do you need to wait before you know
all n facts?

Observation 1: The input limits are very small, all integers are up to a 1000.
Observation 2: In the worstcase in which we can eventually know n facts, the net effect of one week is

adding 1 fact. So after 7n + O(1) days we can give up.
Solution: We can simulate the process for 7n + 14 days. Whenever the number of facts is n we

stop. After 7n + 14 days we can be sure that we will never learn all n facts.
Fun fact: The actual maximum number of days you have to wait is 6976.

Running time: O(7n) (the 7 is to signify the dependence on the number of days in the week).
Pitfall: It is possible to solve this problem in O(1) by case-working on the ending day, and

using formulas involving ceil division. This solution is prone to mistakes.

Statistics: 53 submissions, 14 accepted

J: Jumbled Keys
Problem author: Arnoud van der Leer

Problem: Decipher a message, using a series of mapped words.

Solution: Use a map! Process every pair of words, and map every letter in the first word to the
letter it corresponds to in the second word.

Edge case: If 25 letters are mapped, the 26th letter maps to the only letter that has no other
letter mapped to it.

Running time: O(n · ℓ), where ℓ is the average length of the words.

Statistics: 38 submissions, 14 accepted, 1 unknown

J: Jumbled Keys
Problem author: Arnoud van der Leer

Problem: Decipher a message, using a series of mapped words.
Solution: Use a map! Process every pair of words, and map every letter in the first word to the

letter it corresponds to in the second word.

Edge case: If 25 letters are mapped, the 26th letter maps to the only letter that has no other
letter mapped to it.

Running time: O(n · ℓ), where ℓ is the average length of the words.

Statistics: 38 submissions, 14 accepted, 1 unknown

J: Jumbled Keys
Problem author: Arnoud van der Leer

Problem: Decipher a message, using a series of mapped words.
Solution: Use a map! Process every pair of words, and map every letter in the first word to the

letter it corresponds to in the second word.
Edge case: If 25 letters are mapped, the 26th letter maps to the only letter that has no other

letter mapped to it.

Running time: O(n · ℓ), where ℓ is the average length of the words.

Statistics: 38 submissions, 14 accepted, 1 unknown

J: Jumbled Keys
Problem author: Arnoud van der Leer

Problem: Decipher a message, using a series of mapped words.
Solution: Use a map! Process every pair of words, and map every letter in the first word to the

letter it corresponds to in the second word.
Edge case: If 25 letters are mapped, the 26th letter maps to the only letter that has no other

letter mapped to it.
Running time: O(n · ℓ), where ℓ is the average length of the words.

Statistics: 38 submissions, 14 accepted, 1 unknown

J: Jumbled Keys
Problem author: Arnoud van der Leer

Problem: Decipher a message, using a series of mapped words.
Solution: Use a map! Process every pair of words, and map every letter in the first word to the

letter it corresponds to in the second word.
Edge case: If 25 letters are mapped, the 26th letter maps to the only letter that has no other

letter mapped to it.
Running time: O(n · ℓ), where ℓ is the average length of the words.

Statistics: 38 submissions, 14 accepted, 1 unknown

A: Array Annihilation
Problem author: Leon van der Waal

Problem: Given an array, is it possible to make all values equal to 0 when repeatedly
decrementing two or more consecutive values in the array.

Observation: Every value in the array needs to be decremented along with either of its neighbours.
So for each position i , it is necessary that ai ≥ ai−1 + ai+1.

Solution: If this inequality holds for each triplet of positions in the array: “possible”.
Else: “impossible”.

Pitfall: Be sure to handle the first and last value in the array: a1 ≥ a2 and an−1 ≤ an.
Running time: O(n).

A: Array Annihilation
Problem author: Leon van der Waal

Problem: Given an array, is it possible to make all values equal to 0 when repeatedly
decrementing two or more consecutive values in the array.

Observation: Every value in the array needs to be decremented along with either of its neighbours.
So for each position i , it is necessary that ai ≥ ai−1 + ai+1.

Solution: If this inequality holds for each triplet of positions in the array: “possible”.
Else: “impossible”.

Pitfall: Be sure to handle the first and last value in the array: a1 ≥ a2 and an−1 ≤ an.
Running time: O(n).

A: Array Annihilation
Problem author: Leon van der Waal

Problem: Given an array, is it possible to make all values equal to 0 when repeatedly
decrementing two or more consecutive values in the array.

Observation: Every value in the array needs to be decremented along with either of its neighbours.
So for each position i , it is necessary that ai ≥ ai−1 + ai+1.

Solution: If this inequality holds for each triplet of positions in the array: “possible”.
Else: “impossible”.

Pitfall: Be sure to handle the first and last value in the array: a1 ≥ a2 and an−1 ≤ an.
Running time: O(n).

A: Array Annihilation
Problem author: Leon van der Waal

Problem: Given an array, is it possible to make all values equal to 0 when repeatedly
decrementing two or more consecutive values in the array.

Observation: Every value in the array needs to be decremented along with either of its neighbours.
So for each position i , it is necessary that ai ≥ ai−1 + ai+1.

Solution: If this inequality holds for each triplet of positions in the array: “possible”.
Else: “impossible”.

Pitfall: Be sure to handle the first and last value in the array: a1 ≥ a2 and an−1 ≤ an.

Running time: O(n).

A: Array Annihilation
Problem author: Leon van der Waal

Problem: Given an array, is it possible to make all values equal to 0 when repeatedly
decrementing two or more consecutive values in the array.

Observation: Every value in the array needs to be decremented along with either of its neighbours.
So for each position i , it is necessary that ai ≥ ai−1 + ai+1.

Solution: If this inequality holds for each triplet of positions in the array: “possible”.
Else: “impossible”.

Pitfall: Be sure to handle the first and last value in the array: a1 ≥ a2 and an−1 ≤ an.
Running time: O(n).

A: Array Annihilation
Problem author: Leon van der Waal

Problem: Given an array, is it possible to make all values equal to 0 when repeatedly
decrementing two or more consecutive values in the array.

Solution: If ai ≥ ai−1 + ai+1 holds for each triplet of positions in the array: “possible”.
Else: “impossible”.

Proof: It’s clear the condition is necessary. We need to show that it’s sufficient.

• It’s sufficient to restrict use to length-2 and length-3 segments only.
• The total number of length-2, length-3 segments starting at 1 is a1.
• Those segments cover [1, 2] or [1, 2, 3]. This means a2 -= a1, a3 -= δ, where

δ ∈ [0, a1].
• If the original a1, . . . , an satisfied condition, one can select δ such that

a2 − a1, a3 − δ, a4, . . . , an satisfies the condition.
• Using induction, the condition is sufficient.

Statistics: 28 submissions, 10 accepted

A: Array Annihilation
Problem author: Leon van der Waal

Problem: Given an array, is it possible to make all values equal to 0 when repeatedly
decrementing two or more consecutive values in the array.

Solution: If ai ≥ ai−1 + ai+1 holds for each triplet of positions in the array: “possible”.
Else: “impossible”.

Proof: It’s clear the condition is necessary. We need to show that it’s sufficient.
• It’s sufficient to restrict use to length-2 and length-3 segments only.

• The total number of length-2, length-3 segments starting at 1 is a1.
• Those segments cover [1, 2] or [1, 2, 3]. This means a2 -= a1, a3 -= δ, where

δ ∈ [0, a1].
• If the original a1, . . . , an satisfied condition, one can select δ such that

a2 − a1, a3 − δ, a4, . . . , an satisfies the condition.
• Using induction, the condition is sufficient.

Statistics: 28 submissions, 10 accepted

A: Array Annihilation
Problem author: Leon van der Waal

Problem: Given an array, is it possible to make all values equal to 0 when repeatedly
decrementing two or more consecutive values in the array.

Solution: If ai ≥ ai−1 + ai+1 holds for each triplet of positions in the array: “possible”.
Else: “impossible”.

Proof: It’s clear the condition is necessary. We need to show that it’s sufficient.
• It’s sufficient to restrict use to length-2 and length-3 segments only.
• The total number of length-2, length-3 segments starting at 1 is a1.

• Those segments cover [1, 2] or [1, 2, 3]. This means a2 -= a1, a3 -= δ, where
δ ∈ [0, a1].

• If the original a1, . . . , an satisfied condition, one can select δ such that
a2 − a1, a3 − δ, a4, . . . , an satisfies the condition.

• Using induction, the condition is sufficient.

Statistics: 28 submissions, 10 accepted

A: Array Annihilation
Problem author: Leon van der Waal

Problem: Given an array, is it possible to make all values equal to 0 when repeatedly
decrementing two or more consecutive values in the array.

Solution: If ai ≥ ai−1 + ai+1 holds for each triplet of positions in the array: “possible”.
Else: “impossible”.

Proof: It’s clear the condition is necessary. We need to show that it’s sufficient.
• It’s sufficient to restrict use to length-2 and length-3 segments only.
• The total number of length-2, length-3 segments starting at 1 is a1.
• Those segments cover [1, 2] or [1, 2, 3]. This means a2 -= a1, a3 -= δ, where

δ ∈ [0, a1].

• If the original a1, . . . , an satisfied condition, one can select δ such that
a2 − a1, a3 − δ, a4, . . . , an satisfies the condition.

• Using induction, the condition is sufficient.

Statistics: 28 submissions, 10 accepted

A: Array Annihilation
Problem author: Leon van der Waal

Problem: Given an array, is it possible to make all values equal to 0 when repeatedly
decrementing two or more consecutive values in the array.

Solution: If ai ≥ ai−1 + ai+1 holds for each triplet of positions in the array: “possible”.
Else: “impossible”.

Proof: It’s clear the condition is necessary. We need to show that it’s sufficient.
• It’s sufficient to restrict use to length-2 and length-3 segments only.
• The total number of length-2, length-3 segments starting at 1 is a1.
• Those segments cover [1, 2] or [1, 2, 3]. This means a2 -= a1, a3 -= δ, where

δ ∈ [0, a1].
• If the original a1, . . . , an satisfied condition, one can select δ such that

a2 − a1, a3 − δ, a4, . . . , an satisfies the condition.

• Using induction, the condition is sufficient.

Statistics: 28 submissions, 10 accepted

A: Array Annihilation
Problem author: Leon van der Waal

Problem: Given an array, is it possible to make all values equal to 0 when repeatedly
decrementing two or more consecutive values in the array.

Solution: If ai ≥ ai−1 + ai+1 holds for each triplet of positions in the array: “possible”.
Else: “impossible”.

Proof: It’s clear the condition is necessary. We need to show that it’s sufficient.
• It’s sufficient to restrict use to length-2 and length-3 segments only.
• The total number of length-2, length-3 segments starting at 1 is a1.
• Those segments cover [1, 2] or [1, 2, 3]. This means a2 -= a1, a3 -= δ, where

δ ∈ [0, a1].
• If the original a1, . . . , an satisfied condition, one can select δ such that

a2 − a1, a3 − δ, a4, . . . , an satisfies the condition.
• Using induction, the condition is sufficient.

Statistics: 28 submissions, 10 accepted

A: Array Annihilation
Problem author: Leon van der Waal

Problem: Given an array, is it possible to make all values equal to 0 when repeatedly
decrementing two or more consecutive values in the array.

Solution: If ai ≥ ai−1 + ai+1 holds for each triplet of positions in the array: “possible”.
Else: “impossible”.

Proof: It’s clear the condition is necessary. We need to show that it’s sufficient.
• It’s sufficient to restrict use to length-2 and length-3 segments only.
• The total number of length-2, length-3 segments starting at 1 is a1.
• Those segments cover [1, 2] or [1, 2, 3]. This means a2 -= a1, a3 -= δ, where

δ ∈ [0, a1].
• If the original a1, . . . , an satisfied condition, one can select δ such that

a2 − a1, a3 − δ, a4, . . . , an satisfies the condition.
• Using induction, the condition is sufficient.

Statistics: 28 submissions, 10 accepted

E: Equation Extrapolation
Problem author: Jeroen Op de Beek

Problem: Recover the coefficients of a hidden polynomial P(x) using at most 9 queries.

Observation: Since each coefficient ai satisfies 0 ≤ ai ≤ 9, querying at any x > 9 returns all
coefficients directly in base-x .

Solution: Query with x = 10, then extract the coefficients by reading the returned number’s
digits in reverse.

Running time: O(d).
Fun fact: Can be solved in one very short line of Python!

print("!", *input("? 10\n")[::-1])

Statistics: 5 submissions, 4 accepted

E: Equation Extrapolation
Problem author: Jeroen Op de Beek

Problem: Recover the coefficients of a hidden polynomial P(x) using at most 9 queries.
Observation: Since each coefficient ai satisfies 0 ≤ ai ≤ 9, querying at any x > 9 returns all

coefficients directly in base-x .

Solution: Query with x = 10, then extract the coefficients by reading the returned number’s
digits in reverse.

Running time: O(d).
Fun fact: Can be solved in one very short line of Python!

print("!", *input("? 10\n")[::-1])

Statistics: 5 submissions, 4 accepted

E: Equation Extrapolation
Problem author: Jeroen Op de Beek

Problem: Recover the coefficients of a hidden polynomial P(x) using at most 9 queries.
Observation: Since each coefficient ai satisfies 0 ≤ ai ≤ 9, querying at any x > 9 returns all

coefficients directly in base-x .
Solution: Query with x = 10, then extract the coefficients by reading the returned number’s

digits in reverse.

Running time: O(d).
Fun fact: Can be solved in one very short line of Python!

print("!", *input("? 10\n")[::-1])

Statistics: 5 submissions, 4 accepted

E: Equation Extrapolation
Problem author: Jeroen Op de Beek

Problem: Recover the coefficients of a hidden polynomial P(x) using at most 9 queries.
Observation: Since each coefficient ai satisfies 0 ≤ ai ≤ 9, querying at any x > 9 returns all

coefficients directly in base-x .
Solution: Query with x = 10, then extract the coefficients by reading the returned number’s

digits in reverse.
Running time: O(d).

Fun fact: Can be solved in one very short line of Python!
print("!", *input("? 10\n")[::-1])

Statistics: 5 submissions, 4 accepted

E: Equation Extrapolation
Problem author: Jeroen Op de Beek

Problem: Recover the coefficients of a hidden polynomial P(x) using at most 9 queries.
Observation: Since each coefficient ai satisfies 0 ≤ ai ≤ 9, querying at any x > 9 returns all

coefficients directly in base-x .
Solution: Query with x = 10, then extract the coefficients by reading the returned number’s

digits in reverse.
Running time: O(d).

Fun fact: Can be solved in one very short line of Python!
print("!", *input("? 10\n")[::-1])

Statistics: 5 submissions, 4 accepted

E: Equation Extrapolation
Problem author: Jeroen Op de Beek

Problem: Recover the coefficients of a hidden polynomial P(x) using at most 9 queries.
Observation: Since each coefficient ai satisfies 0 ≤ ai ≤ 9, querying at any x > 9 returns all

coefficients directly in base-x .
Solution: Query with x = 10, then extract the coefficients by reading the returned number’s

digits in reverse.
Running time: O(d).

Fun fact: Can be solved in one very short line of Python!
print("!", *input("? 10\n")[::-1])

Statistics: 5 submissions, 4 accepted

F: Frog and Princess
Problem author: Wietze Koops

Problem: Given positions of frog and princess, find out if the frog can jump to the princess
within n jumps. The ith jump should jump a distance of ai .

Observation 1: Only Euclidean distance matters: d(f , p) =
√

(xp − xf)2 + (yp − yf)2

Observation 2: If there exists a valid path, then the lengths d(f , p), a1, a2, . . . , ak can form the sides of
a polygon, for some k.

Observation 3: Arbitrary integers b1, b2, . . . , bk can form a polygon iff

2 · max (b1, b2, . . . , bk) ≤ b1 + b2 + · · · + bk

Solution: Calculate prefix maximums and prefix sums of array ai . For each prefix of length k from
1 to n, check the polygon condition and output “yes” if any of the checks succeed.

F: Frog and Princess
Problem author: Wietze Koops

Problem: Given positions of frog and princess, find out if the frog can jump to the princess
within n jumps. The ith jump should jump a distance of ai .

Observation 1: Only Euclidean distance matters: d(f , p) =
√

(xp − xf)2 + (yp − yf)2

Observation 2: If there exists a valid path, then the lengths d(f , p), a1, a2, . . . , ak can form the sides of
a polygon, for some k.

Observation 3: Arbitrary integers b1, b2, . . . , bk can form a polygon iff

2 · max (b1, b2, . . . , bk) ≤ b1 + b2 + · · · + bk

Solution: Calculate prefix maximums and prefix sums of array ai . For each prefix of length k from
1 to n, check the polygon condition and output “yes” if any of the checks succeed.

F: Frog and Princess
Problem author: Wietze Koops

Problem: Given positions of frog and princess, find out if the frog can jump to the princess
within n jumps. The ith jump should jump a distance of ai .

Observation 1: Only Euclidean distance matters: d(f , p) =
√

(xp − xf)2 + (yp − yf)2

Observation 2: If there exists a valid path, then the lengths d(f , p), a1, a2, . . . , ak can form the sides of
a polygon, for some k.

Observation 3: Arbitrary integers b1, b2, . . . , bk can form a polygon iff

2 · max (b1, b2, . . . , bk) ≤ b1 + b2 + · · · + bk

Solution: Calculate prefix maximums and prefix sums of array ai . For each prefix of length k from
1 to n, check the polygon condition and output “yes” if any of the checks succeed.

F: Frog and Princess
Problem author: Wietze Koops

Problem: Given positions of frog and princess, find out if the frog can jump to the princess
within n jumps. The ith jump should jump a distance of ai .

Observation 1: Only Euclidean distance matters: d(f , p) =
√

(xp − xf)2 + (yp − yf)2

Observation 2: If there exists a valid path, then the lengths d(f , p), a1, a2, . . . , ak can form the sides of
a polygon, for some k.

Observation 3: Arbitrary integers b1, b2, . . . , bk can form a polygon iff

2 · max (b1, b2, . . . , bk) ≤ b1 + b2 + · · · + bk

Solution: Calculate prefix maximums and prefix sums of array ai . For each prefix of length k from
1 to n, check the polygon condition and output “yes” if any of the checks succeed.

F: Frog and Princess
Problem author: Wietze Koops

Problem: Given positions of frog and princess, find out if the frog can jump to the princess
within n jumps. The ith jump should jump a distance of ai .

Observation 1: Only Euclidean distance matters: d(f , p) =
√

(xp − xf)2 + (yp − yf)2

Observation 2: If there exists a valid path, then the lengths d(f , p), a1, a2, . . . , ak can form the sides of
a polygon, for some k.

Observation 3: Arbitrary integers b1, b2, . . . , bk can form a polygon iff

2 · max (b1, b2, . . . , bk) ≤ b1 + b2 + · · · + bk

Solution: Calculate prefix maximums and prefix sums of array ai . For each prefix of length k from
1 to n, check the polygon condition and output “yes” if any of the checks succeed.

F: Frog and Princess
Problem author: Wietze Koops

Problem: Given positions of frog and princess, find out if the frog can jump to the princess
within n jumps. The ith jump should jump a distance of ai .

Solution: Calculate prefix maximums and prefix sums of array ai . For each prefix of length k from
1 to n, check the polygon condition and output “yes” if any of the checks succeed.

Pitfall: The square root for calculation of d(f , p) results in a floating point number. Using
standard double floating-point arithmetic this is not precise enough (input into the
function can go up to 1018 while doubles only have a relative precision of ≈ 10−16).
Fixes: Use long double in C++, or BigInteger in Java,
or rewrite the polygon formula to use d(f , p)2, which is an integer:

d(f , p) ≤ x ⇐⇒ x ≥ 0 ∧ d(f , p)2 ≤ x2

Running time: Everything can be done in linear time O(n).

Statistics: 14 submissions, 3 accepted

F: Frog and Princess
Problem author: Wietze Koops

Problem: Given positions of frog and princess, find out if the frog can jump to the princess
within n jumps. The ith jump should jump a distance of ai .

Solution: Calculate prefix maximums and prefix sums of array ai . For each prefix of length k from
1 to n, check the polygon condition and output “yes” if any of the checks succeed.

Pitfall: The square root for calculation of d(f , p) results in a floating point number. Using
standard double floating-point arithmetic this is not precise enough (input into the
function can go up to 1018 while doubles only have a relative precision of ≈ 10−16).

Fixes: Use long double in C++, or BigInteger in Java,
or rewrite the polygon formula to use d(f , p)2, which is an integer:

d(f , p) ≤ x ⇐⇒ x ≥ 0 ∧ d(f , p)2 ≤ x2

Running time: Everything can be done in linear time O(n).

Statistics: 14 submissions, 3 accepted

F: Frog and Princess
Problem author: Wietze Koops

Problem: Given positions of frog and princess, find out if the frog can jump to the princess
within n jumps. The ith jump should jump a distance of ai .

Solution: Calculate prefix maximums and prefix sums of array ai . For each prefix of length k from
1 to n, check the polygon condition and output “yes” if any of the checks succeed.

Pitfall: The square root for calculation of d(f , p) results in a floating point number. Using
standard double floating-point arithmetic this is not precise enough (input into the
function can go up to 1018 while doubles only have a relative precision of ≈ 10−16).
Fixes: Use long double in C++, or BigInteger in Java,
or rewrite the polygon formula to use d(f , p)2, which is an integer:

d(f , p) ≤ x ⇐⇒ x ≥ 0 ∧ d(f , p)2 ≤ x2

Running time: Everything can be done in linear time O(n).

Statistics: 14 submissions, 3 accepted

F: Frog and Princess
Problem author: Wietze Koops

Problem: Given positions of frog and princess, find out if the frog can jump to the princess
within n jumps. The ith jump should jump a distance of ai .

Solution: Calculate prefix maximums and prefix sums of array ai . For each prefix of length k from
1 to n, check the polygon condition and output “yes” if any of the checks succeed.

Pitfall: The square root for calculation of d(f , p) results in a floating point number. Using
standard double floating-point arithmetic this is not precise enough (input into the
function can go up to 1018 while doubles only have a relative precision of ≈ 10−16).
Fixes: Use long double in C++, or BigInteger in Java,
or rewrite the polygon formula to use d(f , p)2, which is an integer:

d(f , p) ≤ x ⇐⇒ x ≥ 0 ∧ d(f , p)2 ≤ x2

Running time: Everything can be done in linear time O(n).

Statistics: 14 submissions, 3 accepted

F: Frog and Princess
Problem author: Wietze Koops

Problem: Given positions of frog and princess, find out if the frog can jump to the princess
within n jumps. The ith jump should jump a distance of ai .

Solution: Calculate prefix maximums and prefix sums of array ai . For each prefix of length k from
1 to n, check the polygon condition and output “yes” if any of the checks succeed.

Pitfall: The square root for calculation of d(f , p) results in a floating point number. Using
standard double floating-point arithmetic this is not precise enough (input into the
function can go up to 1018 while doubles only have a relative precision of ≈ 10−16).
Fixes: Use long double in C++, or BigInteger in Java,
or rewrite the polygon formula to use d(f , p)2, which is an integer:

d(f , p) ≤ x ⇐⇒ x ≥ 0 ∧ d(f , p)2 ≤ x2

Running time: Everything can be done in linear time O(n).

Statistics: 14 submissions, 3 accepted

K: Kite Construction
Problem author: Jeroen Op de Beek

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on
each side. Divide these points into n quadrilaterals maximizing the sum of their areas.

Solution: Let (ai , 0), (ℓ, bi), (ci , ℓ) and (0, di) be the coordinates of the corners of the ith
quadrilateral. Then we can compute the sum of the areas by considering how much is
cut off from the full ℓ × ℓ square:

n∑
i=1

(
ℓ2 − 1

2 aidi − 1
2 (ℓ − ai)bi − 1

2 (ℓ − bi)(ℓ − ci) − 1
2 ci(ℓ − di)

)
.

(0, di)

(ai, 0)

(ci, ℓ)

(ℓ, bi)

(0, 0) (ℓ, 0)

(ℓ, ℓ)(0, ℓ)

K: Kite Construction
Problem author: Jeroen Op de Beek

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on
each side. Divide these points into n quadrilaterals maximizing the sum of their areas.

Solution: Let (ai , 0), (ℓ, bi), (ci , ℓ) and (0, di) be the coordinates of the corners of the ith
quadrilateral. Then we can compute the sum of the areas by considering how much is
cut off from the full ℓ × ℓ square:

n∑
i=1

(
ℓ2 − 1

2 aidi − 1
2 (ℓ − ai)bi − 1

2 (ℓ − bi)(ℓ − ci) − 1
2 ci(ℓ − di)

)
.

(0, di)

(ai, 0)

(ci, ℓ)

(ℓ, bi)

(0, 0) (ℓ, 0)

(ℓ, ℓ)(0, ℓ)

K: Kite Construction
Problem author: Jeroen Op de Beek

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on
each side. Divide these points into n quadrilaterals maximizing the sum of their areas

n∑
i=1

(
ℓ2 − 1

2 aidi − 1
2 (ℓ − ai)bi − 1

2 (ℓ − bi)(ℓ − ci) − 1
2 ci(ℓ − di)

)
.

over all possible ways to order the points on each side of the square.
Without loss of generality assume a1 < a2 < . . . < an.

Insight: First consider minimizing
∑n

i=1
1
2 aidi only. To do this, we should sort the di in the

other order, i.e. such that d1 > d2 > . . . > dn.
Proof: Suppose that i < j (and hence ai < aj), but di < dj . Then

aidj + ajdi = aidi + ajdj + (ai − aj)︸ ︷︷ ︸
>0

(dj − di)︸ ︷︷ ︸
<0

,

so swapping di and dj would lead to a smaller area cut off.
Hence, whenever i < j we have di > dj .

K: Kite Construction
Problem author: Jeroen Op de Beek

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on
each side. Divide these points into n quadrilaterals maximizing the sum of their areas

n∑
i=1

(
ℓ2 − 1

2 aidi − 1
2 (ℓ − ai)bi − 1

2 (ℓ − bi)(ℓ − ci) − 1
2 ci(ℓ − di)

)
.

over all possible ways to order the points on each side of the square.
Without loss of generality assume a1 < a2 < . . . < an.

Insight: First consider minimizing
∑n

i=1
1
2 aidi only. To do this, we should sort the di in the

other order, i.e. such that d1 > d2 > . . . > dn.

Proof: Suppose that i < j (and hence ai < aj), but di < dj . Then

aidj + ajdi = aidi + ajdj + (ai − aj)︸ ︷︷ ︸
>0

(dj − di)︸ ︷︷ ︸
<0

,

so swapping di and dj would lead to a smaller area cut off.
Hence, whenever i < j we have di > dj .

K: Kite Construction
Problem author: Jeroen Op de Beek

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on
each side. Divide these points into n quadrilaterals maximizing the sum of their areas

n∑
i=1

(
ℓ2 − 1

2 aidi − 1
2 (ℓ − ai)bi − 1

2 (ℓ − bi)(ℓ − ci) − 1
2 ci(ℓ − di)

)
.

over all possible ways to order the points on each side of the square.
Without loss of generality assume a1 < a2 < . . . < an.

Insight: First consider minimizing
∑n

i=1
1
2 aidi only. To do this, we should sort the di in the

other order, i.e. such that d1 > d2 > . . . > dn.
Proof: Suppose that i < j (and hence ai < aj), but di < dj . Then

aidj + ajdi = aidi + ajdj + (ai − aj)︸ ︷︷ ︸
>0

(dj − di)︸ ︷︷ ︸
<0

,

so swapping di and dj would lead to a smaller area cut off.
Hence, whenever i < j we have di > dj .

K: Kite Construction
Problem author: Jeroen Op de Beek

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on
each side. Divide these points into n quadrilaterals maximizing the sum of their areas

n∑
i=1

(
ℓ2 − 1

2 aidi − 1
2 (ℓ − ai)bi − 1

2 (ℓ − bi)(ℓ − ci) − 1
2 ci(ℓ − di)

)
.

over all possible ways to order the points on each side of the square.
Without loss of generality assume a1 < a2 < . . . < an.

Insight: First consider minimizing
∑n

i=1
1
2 aidi only. To do this, we should sort the di in the

other order, i.e. such that d1 > d2 > . . . > dn.
Proof: Suppose that i < j (and hence ai < aj), but di < dj . Then

aidj + ajdi = aidi + ajdj + (ai − aj)︸ ︷︷ ︸
>0

(dj − di)︸ ︷︷ ︸
<0

,

so swapping di and dj would lead to a smaller area cut off.
Hence, whenever i < j we have di > dj .

K: Kite Construction
Problem author: Jeroen Op de Beek

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on
each side. Divide these points into n quadrilaterals maximizing the sum of their areas

n∑
i=1

(
ℓ2 − 1

2 aidi − 1
2 (ℓ − ai)bi − 1

2 (ℓ − bi)(ℓ − ci) − 1
2 ci(ℓ − di)

)
.

over all possible ways to order the points on each side of the square.
Without loss of generality assume a1 < . . . < an.

Insight: To minimize area cut off at bottom left corner we should sort d1 > . . . > dn.

Then ℓ − d1 < . . . < ℓ − dn, so to minimize the area cut
off at the top left corner we should sort c1 > . . . > cn.
Then ℓ − c1 < . . . < ℓ − cn, so to minimize the area cut
off at the top right corner we should sort ℓ − b1 > . . . > ℓ − bn,
i.e. b1 < . . . < bn.
Then b1 < . . . < bn and ℓ − a1 > . . . > ℓ − an, so this
also mimimizes the area cut off at the bottom right corner.

(0, di)

(ai, 0)

(ci, ℓ)

(ℓ, bi)

(0, 0) (ℓ, 0)

(ℓ, ℓ)(0, ℓ)

K: Kite Construction
Problem author: Jeroen Op de Beek

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on
each side. Divide these points into n quadrilaterals maximizing the sum of their areas

n∑
i=1

(
ℓ2 − 1

2 aidi − 1
2 (ℓ − ai)bi − 1

2 (ℓ − bi)(ℓ − ci) − 1
2 ci(ℓ − di)

)
.

over all possible ways to order the points on each side of the square.
Without loss of generality assume a1 < . . . < an.

Insight: To minimize area cut off at bottom left corner we should sort d1 > . . . > dn.
Then ℓ − d1 < . . . < ℓ − dn, so to minimize the area cut
off at the top left corner we should sort c1 > . . . > cn.

Then ℓ − c1 < . . . < ℓ − cn, so to minimize the area cut
off at the top right corner we should sort ℓ − b1 > . . . > ℓ − bn,
i.e. b1 < . . . < bn.
Then b1 < . . . < bn and ℓ − a1 > . . . > ℓ − an, so this
also mimimizes the area cut off at the bottom right corner.

(0, di)

(ai, 0)

(ci, ℓ)

(ℓ, bi)

(0, 0) (ℓ, 0)

(ℓ, ℓ)(0, ℓ)

K: Kite Construction
Problem author: Jeroen Op de Beek

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on
each side. Divide these points into n quadrilaterals maximizing the sum of their areas

n∑
i=1

(
ℓ2 − 1

2 aidi − 1
2 (ℓ − ai)bi − 1

2 (ℓ − bi)(ℓ − ci) − 1
2 ci(ℓ − di)

)
.

over all possible ways to order the points on each side of the square.
Without loss of generality assume a1 < . . . < an.

Insight: To minimize area cut off at bottom left corner we should sort d1 > . . . > dn.
Then ℓ − d1 < . . . < ℓ − dn, so to minimize the area cut
off at the top left corner we should sort c1 > . . . > cn.
Then ℓ − c1 < . . . < ℓ − cn, so to minimize the area cut
off at the top right corner we should sort ℓ − b1 > . . . > ℓ − bn,
i.e. b1 < . . . < bn.

Then b1 < . . . < bn and ℓ − a1 > . . . > ℓ − an, so this
also mimimizes the area cut off at the bottom right corner.

(0, di)

(ai, 0)

(ci, ℓ)

(ℓ, bi)

(0, 0) (ℓ, 0)

(ℓ, ℓ)(0, ℓ)

K: Kite Construction
Problem author: Jeroen Op de Beek

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on
each side. Divide these points into n quadrilaterals maximizing the sum of their areas

n∑
i=1

(
ℓ2 − 1

2 aidi − 1
2 (ℓ − ai)bi − 1

2 (ℓ − bi)(ℓ − ci) − 1
2 ci(ℓ − di)

)
.

over all possible ways to order the points on each side of the square.
Without loss of generality assume a1 < . . . < an.

Insight: To minimize area cut off at bottom left corner we should sort d1 > . . . > dn.
Then ℓ − d1 < . . . < ℓ − dn, so to minimize the area cut
off at the top left corner we should sort c1 > . . . > cn.
Then ℓ − c1 < . . . < ℓ − cn, so to minimize the area cut
off at the top right corner we should sort ℓ − b1 > . . . > ℓ − bn,
i.e. b1 < . . . < bn.
Then b1 < . . . < bn and ℓ − a1 > . . . > ℓ − an, so this
also mimimizes the area cut off at the bottom right corner.

(0, di)

(ai, 0)

(ci, ℓ)

(ℓ, bi)

(0, 0) (ℓ, 0)

(ℓ, ℓ)(0, ℓ)

K: Kite Construction
Problem author: Jeroen Op de Beek

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on
each side. Divide these points into n quadrilaterals maximizing the sum of their areas

n∑
i=1

(
ℓ2 − 1

2 aidi − 1
2 (ℓ − ai)bi − 1

2 (ℓ − bi)(ℓ − ci) − 1
2 ci(ℓ − di)

)
.

over all possible ways to order the points on each side of the square.
Without loss of generality assume a1 < . . . < an.

Solution: Sort the given points such that a1 < . . . < an, b1 < . . . < bn, c1 > . . . > cn, and
d1 > . . . > dn, and then compute the area with the above formula.

Running time: O(n log n).

Statistics: 5 submissions, 2 accepted

K: Kite Construction
Problem author: Jeroen Op de Beek

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on
each side. Divide these points into n quadrilaterals maximizing the sum of their areas

n∑
i=1

(
ℓ2 − 1

2 aidi − 1
2 (ℓ − ai)bi − 1

2 (ℓ − bi)(ℓ − ci) − 1
2 ci(ℓ − di)

)
.

over all possible ways to order the points on each side of the square.
Without loss of generality assume a1 < . . . < an.

Solution: Sort the given points such that a1 < . . . < an, b1 < . . . < bn, c1 > . . . > cn, and
d1 > . . . > dn, and then compute the area with the above formula.

Running time: O(n log n).

Statistics: 5 submissions, 2 accepted

K: Kite Construction
Problem author: Jeroen Op de Beek

Problem: Given are 4n points on the perimeter of a square (with sidelength ℓ), with n points on
each side. Divide these points into n quadrilaterals maximizing the sum of their areas

n∑
i=1

(
ℓ2 − 1

2 aidi − 1
2 (ℓ − ai)bi − 1

2 (ℓ − bi)(ℓ − ci) − 1
2 ci(ℓ − di)

)
.

over all possible ways to order the points on each side of the square.
Without loss of generality assume a1 < . . . < an.

Solution: Sort the given points such that a1 < . . . < an, b1 < . . . < bn, c1 > . . . > cn, and
d1 > . . . > dn, and then compute the area with the above formula.

Running time: O(n log n).

Statistics: 5 submissions, 2 accepted

D: Delicious Trees
Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.
Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest

of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.
Observation 3: Assuming we can split the big tree into n trees of size 1,

the answer is only “impossible” when k > n.
Solution: First calculate the depth of each vertex in the tree using BFS/DFS,

then remove vertices one-by-one from largest to smallest depth.
Red herring: The first sample cuts off larger AVL trees on purpose.

Running time: Dominated by sorting by depth: O(n log n).

Statistics: 5 submissions, 1 accepted, 1 unknown

D: Delicious Trees
Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.

Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest
of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.

Observation 3: Assuming we can split the big tree into n trees of size 1,
the answer is only “impossible” when k > n.

Solution: First calculate the depth of each vertex in the tree using BFS/DFS,
then remove vertices one-by-one from largest to smallest depth.

Red herring: The first sample cuts off larger AVL trees on purpose.
Running time: Dominated by sorting by depth: O(n log n).

Statistics: 5 submissions, 1 accepted, 1 unknown

D: Delicious Trees
Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.
Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest

of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.

Observation 3: Assuming we can split the big tree into n trees of size 1,
the answer is only “impossible” when k > n.

Solution: First calculate the depth of each vertex in the tree using BFS/DFS,
then remove vertices one-by-one from largest to smallest depth.

Red herring: The first sample cuts off larger AVL trees on purpose.
Running time: Dominated by sorting by depth: O(n log n).

Statistics: 5 submissions, 1 accepted, 1 unknown

D: Delicious Trees
Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.
Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest

of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.
Observation 3: Assuming we can split the big tree into n trees of size 1,

the answer is only “impossible” when k > n.

Solution: First calculate the depth of each vertex in the tree using BFS/DFS,
then remove vertices one-by-one from largest to smallest depth.

Red herring: The first sample cuts off larger AVL trees on purpose.
Running time: Dominated by sorting by depth: O(n log n).

Statistics: 5 submissions, 1 accepted, 1 unknown

D: Delicious Trees
Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.
Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest

of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.
Observation 3: Assuming we can split the big tree into n trees of size 1,

the answer is only “impossible” when k > n.
Solution: First calculate the depth of each vertex in the tree using BFS/DFS,

then remove vertices one-by-one from largest to smallest depth.

Red herring: The first sample cuts off larger AVL trees on purpose.
Running time: Dominated by sorting by depth: O(n log n).

Statistics: 5 submissions, 1 accepted, 1 unknown

D: Delicious Trees
Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.
Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest

of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.
Observation 3: Assuming we can split the big tree into n trees of size 1,

the answer is only “impossible” when k > n.
Solution: First calculate the depth of each vertex in the tree using BFS/DFS,

then remove vertices one-by-one from largest to smallest depth.
Red herring: The first sample cuts off larger AVL trees on purpose.

Running time: Dominated by sorting by depth: O(n log n).

Statistics: 5 submissions, 1 accepted, 1 unknown

D: Delicious Trees
Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.
Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest

of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.
Observation 3: Assuming we can split the big tree into n trees of size 1,

the answer is only “impossible” when k > n.
Solution: First calculate the depth of each vertex in the tree using BFS/DFS,

then remove vertices one-by-one from largest to smallest depth.
Red herring: The first sample cuts off larger AVL trees on purpose.

Running time: Dominated by sorting by depth: O(n log n).

Statistics: 5 submissions, 1 accepted, 1 unknown

D: Delicious Trees
Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.
Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest

of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.
Observation 3: Assuming we can split the big tree into n trees of size 1,

the answer is only “impossible” when k > n.
Solution: First calculate the depth of each vertex in the tree using BFS/DFS,

then remove vertices one-by-one from largest to smallest depth.
Red herring: The first sample cuts off larger AVL trees on purpose.

Running time: Dominated by sorting by depth: O(n log n).

Statistics: 5 submissions, 1 accepted, 1 unknown

I: Interesting Mountains
Problem author: Mihail Bankov

3

1
2

Problem: Calculate the number of “interesting formations”.

Observation 1: This is similar to counting inversions.
An inversion is a pair i < j such that hi > hj .
Let’s first learn how to count inversions.

I: Interesting Mountains
Problem author: Mihail Bankov

3

1
2

Problem: Calculate the number of “interesting formations”.
Observation 1: This is similar to counting inversions.

An inversion is a pair i < j such that hi > hj .
Let’s first learn how to count inversions.

I: Interesting Mountains
Problem author: Mihail Bankov

3

1
2

Problem: Calculate the number of “interesting formations”.
Observation 1: This is similar to counting inversions.

An inversion is a pair i < j such that hi > hj .

Let’s first learn how to count inversions.

I: Interesting Mountains
Problem author: Mihail Bankov

3

1
2

Problem: Calculate the number of “interesting formations”.
Observation 1: This is similar to counting inversions.

An inversion is a pair i < j such that hi > hj .
Let’s first learn how to count inversions.

I: Interesting Mountains
Problem author: Mihail Bankov

Q: How to count inversions?

A: We go from i = n to i = 1 in decreasing order.
We maintain a datastructure that supports range queries.
For i , answer increases by the number of values lower than hi in the datastructure.
After doing this, insert hi into the datastructure.

Using Fenwick tree or segment tree, O(log(n)) per query / update.

I: Interesting Mountains
Problem author: Mihail Bankov

Q: How to count inversions?
A: We go from i = n to i = 1 in decreasing order.

We maintain a datastructure that supports range queries.
For i , answer increases by the number of values lower than hi in the datastructure.
After doing this, insert hi into the datastructure.

Using Fenwick tree or segment tree, O(log(n)) per query / update.

I: Interesting Mountains
Problem author: Mihail Bankov

Q: How to count inversions?
A: We go from i = n to i = 1 in decreasing order.

We maintain a datastructure that supports range queries.

For i , answer increases by the number of values lower than hi in the datastructure.
After doing this, insert hi into the datastructure.

Using Fenwick tree or segment tree, O(log(n)) per query / update.

I: Interesting Mountains
Problem author: Mihail Bankov

Q: How to count inversions?
A: We go from i = n to i = 1 in decreasing order.

We maintain a datastructure that supports range queries.
For i , answer increases by the number of values lower than hi in the datastructure.

After doing this, insert hi into the datastructure.

Using Fenwick tree or segment tree, O(log(n)) per query / update.

I: Interesting Mountains
Problem author: Mihail Bankov

Q: How to count inversions?
A: We go from i = n to i = 1 in decreasing order.

We maintain a datastructure that supports range queries.
For i , answer increases by the number of values lower than hi in the datastructure.
After doing this, insert hi into the datastructure.

Using Fenwick tree or segment tree, O(log(n)) per query / update.

I: Interesting Mountains
Problem author: Mihail Bankov

Q: How to count inversions?
A: We go from i = n to i = 1 in decreasing order.

We maintain a datastructure that supports range queries.
For i , answer increases by the number of values lower than hi in the datastructure.
After doing this, insert hi into the datastructure.

Using Fenwick tree or segment tree, O(log(n)) per query / update.

I: Interesting Mountains
Problem author: Mihail Bankov

Q: How to count inversions?
A: We go from i = n to i = 1 in decreasing order.

We maintain a datastructure that supports range queries.
For i , answer increases by the number of values lower than hi in the datastructure.
After doing this, insert hi into the datastructure.

Using Fenwick tree or segment tree, O(log(n)) per query / update.

I: Interesting Mountains
Problem author: Mihail Bankov

Q: How to count inversions?
A: We go from i = n to i = 1 in decreasing order.

We maintain a datastructure that supports range queries.
For i , answer increases by the number of values lower than hi in the datastructure.
After doing this, insert hi into the datastructure.

Using Fenwick tree or segment tree, O(log(n)) per query / update.

I: Interesting Mountains
Problem author: Mihail Bankov

Q: How to count inversions?
A: We go from i = n to i = 1 in decreasing order.

We maintain a datastructure that supports range queries.
For i , answer increases by the number of values lower than hi in the datastructure.
After doing this, insert hi into the datastructure.

Using Fenwick tree or segment tree, O(log(n)) per query / update.

I: Interesting Mountains
Problem author: Mihail Bankov

Q: How to count inversions?
A: We go from i = n to i = 1 in decreasing order.

We maintain a datastructure that supports range queries.
For i , answer increases by the number of values lower than hi in the datastructure.
After doing this, insert hi into the datastructure.

Using Fenwick tree or segment tree, O(log(n)) per query / update.

I: Interesting Mountains
Problem author: Mihail Bankov

3

1
2

Problem: Calculate the number of “interesting formations”.
Solution: Let’s loop over i , the first / highest mountain.

Suppose there are k lower mountains in our datastructure.
We add number of pairs

(k(k−1)
2

)
to the answer.

However: This way, we don’t distinguish between hi > hk > hj and hi > hj > hk :

I: Interesting Mountains
Problem author: Mihail Bankov

3

1
2

Problem: Calculate the number of “interesting formations”.
Solution: Let’s loop over i , the first / highest mountain.

Suppose there are k lower mountains in our datastructure.

We add number of pairs
(k(k−1)

2
)

to the answer.
However: This way, we don’t distinguish between hi > hk > hj and hi > hj > hk :

I: Interesting Mountains
Problem author: Mihail Bankov

3

1
2

Problem: Calculate the number of “interesting formations”.
Solution: Let’s loop over i , the first / highest mountain.

Suppose there are k lower mountains in our datastructure.
We add number of pairs

(k(k−1)
2

)
to the answer.

However: This way, we don’t distinguish between hi > hk > hj and hi > hj > hk :

I: Interesting Mountains
Problem author: Mihail Bankov

3

1
2

Problem: Calculate the number of “interesting formations”.
Solution: Let’s loop over i , the first / highest mountain.

Suppose there are k lower mountains in our datastructure.
We add number of pairs

(k(k−1)
2

)
to the answer.

However: This way, we don’t distinguish between hi > hk > hj and hi > hj > hk :

I: Interesting Mountains
Problem author: Mihail Bankov

However: This way, we don’t distinguish between hi > hk > hj and hi > hj > hk :

Solution: Therefore, we subtract the number of formations where hi > hj > hk from the answer.
We can count these by iterating over j:
We then count higher mountains to the left, and lower mountains to the right.
Then multiply and add up these counts.

Running time: We have O(n) calls to a Fenwick tree / segment tree, so O(n log(n)) total.

Statistics: 9 submissions, 0 accepted, 1 unknown

I: Interesting Mountains
Problem author: Mihail Bankov

However: This way, we don’t distinguish between hi > hk > hj and hi > hj > hk :

Solution: Therefore, we subtract the number of formations where hi > hj > hk from the answer.

We can count these by iterating over j:
We then count higher mountains to the left, and lower mountains to the right.
Then multiply and add up these counts.

Running time: We have O(n) calls to a Fenwick tree / segment tree, so O(n log(n)) total.

Statistics: 9 submissions, 0 accepted, 1 unknown

I: Interesting Mountains
Problem author: Mihail Bankov

However: This way, we don’t distinguish between hi > hk > hj and hi > hj > hk :

Solution: Therefore, we subtract the number of formations where hi > hj > hk from the answer.
We can count these by iterating over j:

We then count higher mountains to the left, and lower mountains to the right.
Then multiply and add up these counts.

Running time: We have O(n) calls to a Fenwick tree / segment tree, so O(n log(n)) total.

Statistics: 9 submissions, 0 accepted, 1 unknown

I: Interesting Mountains
Problem author: Mihail Bankov

However: This way, we don’t distinguish between hi > hk > hj and hi > hj > hk :

Solution: Therefore, we subtract the number of formations where hi > hj > hk from the answer.
We can count these by iterating over j:
We then count higher mountains to the left, and lower mountains to the right.

Then multiply and add up these counts.
Running time: We have O(n) calls to a Fenwick tree / segment tree, so O(n log(n)) total.

Statistics: 9 submissions, 0 accepted, 1 unknown

I: Interesting Mountains
Problem author: Mihail Bankov

However: This way, we don’t distinguish between hi > hk > hj and hi > hj > hk :

Solution: Therefore, we subtract the number of formations where hi > hj > hk from the answer.
We can count these by iterating over j:
We then count higher mountains to the left, and lower mountains to the right.
Then multiply and add up these counts.

Running time: We have O(n) calls to a Fenwick tree / segment tree, so O(n log(n)) total.

Statistics: 9 submissions, 0 accepted, 1 unknown

I: Interesting Mountains
Problem author: Mihail Bankov

However: This way, we don’t distinguish between hi > hk > hj and hi > hj > hk :

Solution: Therefore, we subtract the number of formations where hi > hj > hk from the answer.
We can count these by iterating over j:
We then count higher mountains to the left, and lower mountains to the right.
Then multiply and add up these counts.

Running time: We have O(n) calls to a Fenwick tree / segment tree, so O(n log(n)) total.

Statistics: 9 submissions, 0 accepted, 1 unknown

I: Interesting Mountains
Problem author: Mihail Bankov

However: This way, we don’t distinguish between hi > hk > hj and hi > hj > hk :

Solution: Therefore, we subtract the number of formations where hi > hj > hk from the answer.
We can count these by iterating over j:
We then count higher mountains to the left, and lower mountains to the right.
Then multiply and add up these counts.

Running time: We have O(n) calls to a Fenwick tree / segment tree, so O(n log(n)) total.

Statistics: 9 submissions, 0 accepted, 1 unknown

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: For every divisor d of n, minimum number of changes to make t = t ′ ⊙ d for some
string t ′.

Observation 1: n ≤ 100000, so there can be at most 128 different divisors of n.

Naive solution: • Handle each divisor d separately.
• For each position in t ′, pick the character that occurs most often.

• Then count how many letters we must have changed.

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: For every divisor d of n, minimum number of changes to make t = t ′ ⊙ d for some
string t ′.

Observation 1: n ≤ 100000, so there can be at most 128 different divisors of n.

Naive solution: • Handle each divisor d separately.
• For each position in t ′, pick the character that occurs most often.

• Then count how many letters we must have changed.

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: For every divisor d of n, minimum number of changes to make t = t ′ ⊙ d for some
string t ′.

Observation 1: n ≤ 100000, so there can be at most 128 different divisors of n.
Naive solution: • Handle each divisor d separately.

• For each position in t ′, pick the character that occurs most often.

• Then count how many letters we must have changed.

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: For every divisor d of n, minimum number of changes to make t = t ′ ⊙ d for some
string t ′.

Observation 1: n ≤ 100000, so there can be at most 128 different divisors of n.
Naive solution: • Handle each divisor d separately.

• For each position in t ′, pick the character that occurs most often.

• Then count how many letters we must have changed.

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: For every divisor d of n, minimum number of changes to make t = t ′ ⊙ d for some
string t ′.

Observation 1: n ≤ 100000, so there can be at most 128 different divisors of n.
Naive solution: • Handle each divisor d separately.

• For each position in t ′, pick the character that occurs most often.

Babc abcabcabcabcabcabcabcabcabc A abcabcabcabcabc B

• Then count how many letters we must have changed.

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: For every divisor d of n, minimum number of changes to make t = t ′ ⊙ d for some
string t ′.

Observation 1: n ≤ 100000, so there can be at most 128 different divisors of n.
Naive solution: • Handle each divisor d separately.

• For each position in t ′, pick the character that occurs most often.

Babc abcabcabcabcabcabcabcabcabc A abcabcabcabcabc B

abcabcabcabcabc B

• Then count how many letters we must have changed.

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: For every divisor d of n, minimum number of changes to make t = t ′ ⊙ d for some
string t ′.

Observation 1: n ≤ 100000, so there can be at most 128 different divisors of n.
Naive solution: • Handle each divisor d separately.

• For each position in t ′, pick the character that occurs most often.

Babc abcabcabcabcabcabcabcabcabc A abcabcabcabcabc B

abcabcabcabcabc B
• Then count how many letters we must have changed.

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: For every divisor d of n, minimum number of changes to make t = t ′ ⊙ d for some
string t ′.

WA: But what if there is a larger divisor!?

Observation 2: Then our current solution t ′ has a divisor d ′ > 1.
Observation 3: We only need to change one character to make t ′ indivisible.

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: For every divisor d of n, minimum number of changes to make t = t ′ ⊙ d for some
string t ′.

WA: But what if there is a larger divisor!?
Observation 2: Then our current solution t ′ has a divisor d ′ > 1.

Observation 3: We only need to change one character to make t ′ indivisible.

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: For every divisor d of n, minimum number of changes to make t = t ′ ⊙ d for some
string t ′.

WA: But what if there is a larger divisor!?
Observation 2: Then our current solution t ′ has a divisor d ′ > 1.
Observation 3: We only need to change one character to make t ′ indivisible.

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: For every divisor d of n, minimum number of changes to make t = t ′ ⊙ d for some
string t ′.

Observation 3: We only need to change one character to make t ′ indivisible.

Correct solution: • Check if t ′ obtained from the naive solution is indivisible.
• In this case, we are done.
• Otherwise, for each position in t ′ check how much more it costs to modify this

letter.
• Greedily pick the modification that increases cost the least.

Running time: O(n · ω(n)), where ω(n) is the number of divisors of n.
Homework: O(n log log(n)) is possible with some optimizations.

Statistics: 1 submissions, 0 accepted

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: For every divisor d of n, minimum number of changes to make t = t ′ ⊙ d for some
string t ′.

Observation 3: We only need to change one character to make t ′ indivisible.
Correct solution: • Check if t ′ obtained from the naive solution is indivisible.

• In this case, we are done.
• Otherwise, for each position in t ′ check how much more it costs to modify this

letter.
• Greedily pick the modification that increases cost the least.

Running time: O(n · ω(n)), where ω(n) is the number of divisors of n.
Homework: O(n log log(n)) is possible with some optimizations.

Statistics: 1 submissions, 0 accepted

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: For every divisor d of n, minimum number of changes to make t = t ′ ⊙ d for some
string t ′.

Observation 3: We only need to change one character to make t ′ indivisible.
Correct solution: • Check if t ′ obtained from the naive solution is indivisible.

• In this case, we are done.

• Otherwise, for each position in t ′ check how much more it costs to modify this
letter.

• Greedily pick the modification that increases cost the least.
Running time: O(n · ω(n)), where ω(n) is the number of divisors of n.

Homework: O(n log log(n)) is possible with some optimizations.

Statistics: 1 submissions, 0 accepted

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: For every divisor d of n, minimum number of changes to make t = t ′ ⊙ d for some
string t ′.

Observation 3: We only need to change one character to make t ′ indivisible.
Correct solution: • Check if t ′ obtained from the naive solution is indivisible.

• In this case, we are done.
• Otherwise, for each position in t ′ check how much more it costs to modify this

letter.

• Greedily pick the modification that increases cost the least.
Running time: O(n · ω(n)), where ω(n) is the number of divisors of n.

Homework: O(n log log(n)) is possible with some optimizations.

Statistics: 1 submissions, 0 accepted

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: For every divisor d of n, minimum number of changes to make t = t ′ ⊙ d for some
string t ′.

Observation 3: We only need to change one character to make t ′ indivisible.
Correct solution: • Check if t ′ obtained from the naive solution is indivisible.

• In this case, we are done.
• Otherwise, for each position in t ′ check how much more it costs to modify this

letter.
• Greedily pick the modification that increases cost the least.

Running time: O(n · ω(n)), where ω(n) is the number of divisors of n.
Homework: O(n log log(n)) is possible with some optimizations.

Statistics: 1 submissions, 0 accepted

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: For every divisor d of n, minimum number of changes to make t = t ′ ⊙ d for some
string t ′.

Observation 3: We only need to change one character to make t ′ indivisible.
Correct solution: • Check if t ′ obtained from the naive solution is indivisible.

• In this case, we are done.
• Otherwise, for each position in t ′ check how much more it costs to modify this

letter.
• Greedily pick the modification that increases cost the least.

Running time: O(n · ω(n)), where ω(n) is the number of divisors of n.

Homework: O(n log log(n)) is possible with some optimizations.

Statistics: 1 submissions, 0 accepted

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: For every divisor d of n, minimum number of changes to make t = t ′ ⊙ d for some
string t ′.

Observation 3: We only need to change one character to make t ′ indivisible.
Correct solution: • Check if t ′ obtained from the naive solution is indivisible.

• In this case, we are done.
• Otherwise, for each position in t ′ check how much more it costs to modify this

letter.
• Greedily pick the modification that increases cost the least.

Running time: O(n · ω(n)), where ω(n) is the number of divisors of n.
Homework: O(n log log(n)) is possible with some optimizations.

Statistics: 1 submissions, 0 accepted

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: For every divisor d of n, minimum number of changes to make t = t ′ ⊙ d for some
string t ′.

Observation 3: We only need to change one character to make t ′ indivisible.
Correct solution: • Check if t ′ obtained from the naive solution is indivisible.

• In this case, we are done.
• Otherwise, for each position in t ′ check how much more it costs to modify this

letter.
• Greedily pick the modification that increases cost the least.

Running time: O(n · ω(n)), where ω(n) is the number of divisors of n.
Homework: O(n log log(n)) is possible with some optimizations.

Statistics: 1 submissions, 0 accepted

Language stats

C C++ Java Python 3
0

10

20

30

40

50 correct
wrong answer
timelimit
run error
pending

Random facts

Jury work

• 418 commits (last year: 447)

• 623 secret test cases (last year: 357)
• 159 accepted jury/proofreader solutions (last year: 120)
• The minimum1 number of lines the jury needed to solve all problems is

2 + 1 + 6 + 5 + 1 + 5 + 2 + 2 + 6 + 3 + 6 = 39

On average 3.5 lines per problem, down from 6.0 last year

1After codegolfing

Random facts

Jury work

• 418 commits (last year: 447)
• 623 secret test cases (last year: 357)

• 159 accepted jury/proofreader solutions (last year: 120)
• The minimum1 number of lines the jury needed to solve all problems is

2 + 1 + 6 + 5 + 1 + 5 + 2 + 2 + 6 + 3 + 6 = 39

On average 3.5 lines per problem, down from 6.0 last year

1After codegolfing

Random facts

Jury work

• 418 commits (last year: 447)
• 623 secret test cases (last year: 357)
• 159 accepted jury/proofreader solutions (last year: 120)

• The minimum1 number of lines the jury needed to solve all problems is

2 + 1 + 6 + 5 + 1 + 5 + 2 + 2 + 6 + 3 + 6 = 39

On average 3.5 lines per problem, down from 6.0 last year

1After codegolfing

Random facts

Jury work

• 418 commits (last year: 447)
• 623 secret test cases (last year: 357)
• 159 accepted jury/proofreader solutions (last year: 120)
• The minimum1 number of lines the jury needed to solve all problems is

2 + 1 + 6 + 5 + 1 + 5 + 2 + 2 + 6 + 3 + 6 = 39

On average 3.5 lines per problem, down from 6.0 last year

1After codegolfing

Thanks to the proofreaders:

• Arnoud van der Leer (TU Delft)
• Dany Sluijk (TU Delft)
• Davina van Meer (Delft)
• Mattia Marziali (RU Groningen)
• Michael Zündorf

(KIT Karlsruhe / NWERC jury)

• Pavel Kunyavskiy (JetBrains Amsterdam)
• Pierre Vandenhove (UMons)
• Thomas Verwoerd

(TU Delft, Hero)
• Thore Husfeldt (ITU Copenhagen / BAPC Jury)
• Wendy Yi (KIT Karlsruhe / NWERC jury)

Thanks to the Jury for the
Freshmen Programming Contests:

• Alice Sayutina (VU Amsterdam)
• Angel Karchev (TU Delft)
• Bálint Kollmann (TU Delft)
• Jeroen Op de Beek (TU Delft)
• Leon van der Waal (TU Delft)

• Liudas Staniulis (VU Amsterdam)
• Maarten Sijm (TU Delft)
• Mihail Bankov (TU Delft)
• Moham Balfakeih (TU Delft)
• Wietze Koops (Radboud Nijmegen / RU Groningen)

2 25 FPC 2025
GAPC 2025

Open online contest

Want to solve the problems you could not finish?
Or have friends that like to solve algorithmic problems?

https://fpcs2025.bapc.eu/

Saturday 17 May 2025 13:00–17:00

Please, do not post/discuss the problems online before this time!

Future contest fun

Excited to participate in the next contest?

Register for the BAPC Preliminaries in September!

Want to organize these contests?

Join the organizing committee!

Want to create programming problems for FPCs next year?

Either join the committee, or contact Maarten Sijm

