Freshmen Programming Contests 2025

Solutions presentation

By the Freshmen Programming Contests 2025 jury for:

AAPJE in Amsterdam
FPC in Delft

FYPC in Eindhoven
GAPC in Groningen

Contest in Mons

May 3, 2025

</>

GAPC 2025

Please do not post the problems online

Other universities will have their contests in the coming weeks.
Please, do not post/discuss the problems online before

Saturday 17 May 2025 at 17:00

A: Array Annihilation

Problem author: Leon van der Waal

Problem: Print 4./n with sufficiently many digits.

A: Array Annihilation

Problem author: Leon van der Waal

Problem: Print 4./n with sufficiently many digits.

Naive solution: Do something stupid. O(2") is too slow!

A: Array Annihilation

Problem author: Leon van der Waal

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!

Smart solution: Just compute the answer.

A: Array Annihilation

Problem author: Leon van der Waal

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

A: Array Annihilation

Problem author: Leon van der Waal

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

Statistics: ... submissions, ... accepted, ... unknown

B: Bakfiets

Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.

B: Bakfiets

Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.

Observation 1: The bottle packaging can be in 2 possible orientations.

B: Bakfiets

Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.
Observation 1: The bottle packaging can be in 2 possible orientations.

Observation 2: You can maximally have 10'® bottles, hence we need 64-bit integers.

B: Bakfiets

Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.
Observation 1: The bottle packaging can be in 2 possible orientations.
Observation 2: You can maximally have 10'® bottles, hence we need 64-bit integers.

Solution: Compute w - h — max (min (w, a) - min (h, b), min (w, b) - min (h, a)).

B: Bakfiets
Problem author: Jeroen Op de Beek

Problem:
Observation 1:
Observation 2:

Solution:

Running time:

Minimize the area of one rectangle that cannot overlap with another.
The bottle packaging can be in 2 possible orientations.

You can maximally have 10*® bottles, hence we need 64-bit integers.
Compute w - h — max (min (w, a) - min (h, b), min (w, b) - min (h, a)).

o(1)

B: Bakfiets

Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.
Observation 1: The bottle packaging can be in 2 possible orientations.
Observation 2: You can maximally have 10'® bottles, hence we need 64-bit integers.
Solution: Compute w - h — max (min (w, a) - min (h, b), min (w, b) - min (h, a)).

Running time: O(1)

Statistics: ... submissions, ... accepted, ... unknown

C: Characterithmetic

Problem author: Jeroen Op de Beek

Problem: Print 4./n with sufficiently many digits.

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: Print 4./n with sufficiently many digits.

Naive solution: Do something stupid. O(2") is too slow!

C: Characterithmetic

Problem author: Jeroen Op de Beek

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!

Smart solution: Just compute the answer.

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

C: Characterithmetic

Problem author: Jeroen Op de Beek

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

Statistics: ... submissions, ... accepted, ... unknown

D: Delicious Trees

Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

D: Delicious Trees

Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.

D: Delicious Trees

Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.

Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest
of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.

D: Delicious Trees

Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.

Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest
of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.

Observation 3: Assuming we can split the big tree into n trees of size 1,
the answer is only “impossible"” when k > n.

D: Delicious Trees

Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.

Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest
of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.

Observation 3: Assuming we can split the big tree into n trees of size 1,
the answer is only “impossible"” when k > n.

Solution: First calculate the depth of each vertex in the tree using BFS/DFS,
then remove vertices one-by-one from largest to smallest depth.

D: Delicious Trees

Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.

Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest
of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.

Observation 3: Assuming we can split the big tree into n trees of size 1,
the answer is only “impossible"” when k > n.

Solution: First calculate the depth of each vertex in the tree using BFS/DFS,
then remove vertices one-by-one from largest to smallest depth.

Red herring: The first sample cuts off larger AVL trees on purpose.

D: Delicious Trees

Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.

Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest
of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.

Observation 3: Assuming we can split the big tree into n trees of size 1,
the answer is only “impossible"” when k > n.

Solution: First calculate the depth of each vertex in the tree using BFS/DFS,
then remove vertices one-by-one from largest to smallest depth.

Red herring: The first sample cuts off larger AVL trees on purpose.
Running time: Dominated by sorting by depth: O(nlog n).

D: Delicious Trees

Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.

Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest
of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.

Observation 3: Assuming we can split the big tree into n trees of size 1,
the answer is only “impossible"” when k > n.

Solution: First calculate the depth of each vertex in the tree using BFS/DFS,
then remove vertices one-by-one from largest to smallest depth.

Red herring: The first sample cuts off larger AVL trees on purpose.
Running time: Dominated by sorting by depth: O(nlog n).

Statistics: ... submissions, ... accepted, ... unknown

E: Equation Extrapolation
Problem author: Jeroen Op de Beek

Problem: Print 4./n with sufficiently many digits.

E: Equation Extrapolation
Problem author: Jeroen Op de Beek

Problem: Print 4./n with sufficiently many digits.

Naive solution: Do something stupid. O(2") is too slow!

E: Equation Extrapolation

Problem author: Jeroen Op de Beek

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!

Smart solution: Just compute the answer.

E: Equation Extrapolation
Problem author: Jeroen Op de Beek

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

E: Equation Extrapolation

Problem author: Jeroen Op de Beek

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

Statistics: ... submissions, ... accepted, ... unknown

F: Frog and Princess

Problem author: Wietze Koops

Problem: Print 4./n with sufficiently many digits.

F: Frog and Princess
Problem author: Wietze Koops

Problem: Print 4./n with sufficiently many digits.

Naive solution: Do something stupid. O(2") is too slow!

F: Frog and Princess

Problem author: Wietze Koops

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!

Smart solution: Just compute the answer.

F: Frog and Princess

Problem author: Wietze Koops

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

F: Frog and Princess

Problem author: Wietze Koops

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

Statistics: ... submissions, ... accepted, ... unknown

G: Gambler’s Dilemma

Problem author: Wietze Koops

Problem: Determine whether two playing cards have any of the four given properties.

G: Gambler’s Dilemma

Problem author: Wietze Koops

Problem: Determine whether two playing cards have any of the four given properties.

Solution: For each property, check whether the cards match it.

G: Gambler’s Dilemma

Problem author: Wietze Koops

Problem: Determine whether two playing cards have any of the four given properties.
Solution: For each property, check whether the cards match it.

Pitfall: Be careful of off-by-one errors when calculating the rank of a card.

ambler’s Dilemma

Problem author: Wietze Koops

Problem: Determine whether two playing cards have any of the four given properties.
Solution: For each property, check whether the cards match it.
Pitfall: Be careful of off-by-one errors when calculating the rank of a card.

Running time: O(1).

G: Gambler’s Dilemma

Problem author: Wietze Koops

Problem: Determine whether two playing cards have any of the four given properties.
Solution: For each property, check whether the cards match it.
Pitfall: Be careful of off-by-one errors when calculating the rank of a card.

Running time: O(1).

Statistics: ... submissions, ... accepted, ... unknown

H: Hopelessly Hungover

Problem author: Wietze Koops

Problem: Print 4./n with sufficiently many digits.

H: Hopelessly Hungover
Problem author: Wietze Koops

Problem: Print 4./n with sufficiently many digits.

Naive solution: Do something stupid. O(2") is too slow!

H: Hopelessly Hungover

Problem author: Wietze Koops

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!

Smart solution: Just compute the answer.

H: Hopelessly Hungover

Problem author: Wietze Koops

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

H: Hopelessly Hungover

Problem author: Wietze Koops

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

Statistics: ... submissions, ... accepted, ... unknown

I: Interesting Mountains

Problem author: Mihail Bankov

Problem: Print 4./n with sufficiently many digits.

I: Interesting Mountains

Problem author: Mihail Bankov

Problem: Print 4./n with sufficiently many digits.

Naive solution: Do something stupid. O(2") is too slow!

I: Interesting Mountains

Problem author: Mihail Bankov

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!

Smart solution: Just compute the answer.

I: Interesting Mountains

Problem author: Mihail Bankov

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

I: Interesting Mountains

Problem author: Mihail Bankov

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

Statistics: ... submissions, ... accepted, ... unknown

J: Jumbled Keys

Problem author: Arnoud van der Leer

Problem: Decipher a message, using a series of mapped words.

J: Jumbled Keys

Problem author: Arnoud van der Leer

Problem: Decipher a message, using a series of mapped words.

Solution: Use a map! Process every pair of words, and map every letter in the first word to the
letter it corresponds to in the second word.

J: Jumbled Keys

Problem author: Arnoud van der Leer

Problem: Decipher a message, using a series of mapped words.

Solution: Use a map! Process every pair of words, and map every letter in the first word to the
letter it corresponds to in the second word.

Edge case: If 25 letters are mapped, the 26th letter maps to the only letter that has no other
letter mapped to it.

J: Jumbled Keys

Problem author: Arnoud van der Leer

Problem:

Solution:

Edge case:

Running time:

Decipher a message, using a series of mapped words.

Use a map! Process every pair of words, and map every letter in the first word to the
letter it corresponds to in the second word.

If 25 letters are mapped, the 26th letter maps to the only letter that has no other
letter mapped to it.

O(n - £), where £ is the average length of the words.

J: Jumbled Keys

Problem author: Arnoud van der Leer

Problem: Decipher a message, using a series of mapped words.

Solution: Use a map! Process every pair of words, and map every letter in the first word to the
letter it corresponds to in the second word.

Edge case: If 25 letters are mapped, the 26th letter maps to the only letter that has no other
letter mapped to it.

Running time: O(n - ¢), where £ is the average length of the words.

Statistics: ... submissions, ... accepted, ... unknown

K: Kite Construction

Problem author: Jeroen Op de Beek

Problem: Print 4./n with sufficiently many digits.

K: Kite Construction
Problem author: Jeroen Op de Beek

Problem: Print 4./n with sufficiently many digits.

Naive solution: Do something stupid. O(2") is too slow!

K: Kite Construction

Problem author: Jeroen Op de Beek

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!

Smart solution: Just compute the answer.

K: Kite Construction

Problem author: Jeroen Op de Beek

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

K: Kite Construction

Problem author: Jeroen Op de Beek

Problem: Print 4./n with sufficiently many digits.
Naive solution: Do something stupid. O(2") is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

Statistics: ... submissions, ... accepted, ... unknown

Jury work

= 265 commits (last year: 447)

! After codegolfing

Jury work
= 265 commits (last year: 447)

= 533 secret test cases (last year: 357)

! After codegolfing

Jury work
= 265 commits (last year: 447)
= 533 secret test cases (last year: 357)

» 121 accepted jury/proofreader solutions (last year: 120)

! After codegolfing

Jury work
= 265 commits (last year: 447)
= 533 secret test cases (last year: 357)
» 121 accepted jury/proofreader solutions (last year: 120)

= The minimum! number of lines the jury needed to solve all problems is
2 L@ DL 242404340 =39

On average 3.5 lines per problem, down from 6.0 last year

! After codegolfing

Thanks to the proofreaders:

= Arnoud van der Leer (TU Delft)
= Dany Sluijk (TU Delft)

= Davina van Meer (Delft)

= Mattia Marziali (RU Groningen)

= Michael Ziindorf @
(KIT Karlsruhe / NWERC jury)

Pavel Kunyavskiy (JetBrains Amsterdam)
Pierre Vandenhove (UMons)

Thomas Verwoerd
(TU Delft, KKotlin Hero @)

Thore Husfeldt (ITU Copenhagen / BAPC Jury)
Wendy Yi (KIT Karlsruhe / NWERC jury)

Thanks to the Jury for the
Freshmen Programming Contests:

= Alice Sayutina (VU Amsterdam) = Liudas Staniulis (VU Amsterdam)

= Angel Karchev (TU Delft) = Maarten Sijm (TU Delft)

= Balint Kollmann (TU Delft) = Mihail Bankov (TU Delft)

= Jeroen Op de Beek (TU Delft) = Moham Balfakeih (TU Delft)

= Leon van der Waal (TU Delft) = Wietze Koops (Radboud Nijmegen / RU Groningen)

Nk | | AR U\VONS

W28258

GAPC 2025

Open online contest

Want to solve the problems you could not finish?
Or have friends that like to solve algorithmic problems?

https://fpcs2025.bapc.eu/

Saturday 17 May 2025 13:00-17:00

Please, do not post/discuss the problems online before this time!

Future contest fun

Excited to participate in the next contest?

Register for the BAPC Preliminaries in September!

Want to organize these contests?

Join the organizing committee!

Want to create programming problems for FPCs next year?

Either join the committee, or contact Maarten Sijm

