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Please do not post the problems online

Other universities will have their contests in the coming weeks.
Please, do not post/discuss the problems online before

Saturday 17 May 2025 at 17:00
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Solution: Use a map! Process every pair of words, and map every letter in the first word to the
letter it corresponds to in the second word.

Edge case: If 25 letters are mapped, the 26th letter maps to the only letter that has no other
letter mapped to it.

Running time: O(n - ¢), where £ is the average length of the words.
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Jury work
= 265 commits (last year: 447)
= 533 secret test cases (last year: 357)
» 121 accepted jury/proofreader solutions (last year: 120)

= The minimum! number of lines the jury needed to solve all problems is
2 L@ DL 242404340 =39

On average 3.5 lines per problem, down from 6.0 last year

! After codegolfing



Thanks to the proofreaders:

= Arnoud van der Leer (TU Delft)
= Dany Sluijk (TU Delft)

= Davina van Meer (Delft)

= Mattia Marziali (RU Groningen)

= Michael Ziindorf @
(KIT Karlsruhe / NWERC jury)

Pavel Kunyavskiy (JetBrains Amsterdam)
Pierre Vandenhove (UMons)

Thomas Verwoerd
(TU Delft, KKotlin Hero @)

Thore Husfeldt (ITU Copenhagen / BAPC Jury)
Wendy Yi (KIT Karlsruhe / NWERC jury)



Thanks to the Jury for the
Freshmen Programming Contests:

= Alice Sayutina (VU Amsterdam) = Liudas Staniulis (VU Amsterdam)

= Angel Karchev (TU Delft) = Maarten Sijm (TU Delft)

= Balint Kollmann (TU Delft) = Mihail Bankov (TU Delft)

= Jeroen Op de Beek (TU Delft) = Moham Balfakeih (TU Delft)

= Leon van der Waal (TU Delft) = Wietze Koops (Radboud Nijmegen / RU Groningen)
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Open online contest

Want to solve the problems you could not finish?
Or have friends that like to solve algorithmic problems?

https://fpcs2025.bapc.eu/

Saturday 17 May 2025 13:00-17:00

Please, do not post/discuss the problems online before this time!



Future contest fun

Excited to participate in the next contest?

Register for the BAPC Preliminaries in September!

Want to organize these contests?

Join the organizing committee!

Want to create programming problems for FPCs next year?

Either join the committee, or contact Maarten Sijm



