
Groningen Algorithm
Programming Contest 2025

GAPC 2025

Problems
A Array Annihilation
B Bakfiets
C Characterithmetic
D Delicious Trees
E Equation Extrapolation
F Frog and Princess
G Gambler’s Dilemma
H Hopelessly Hungover
I Interesting Mountains
J Jumbled Keys
K Kite Construction



Copyright © 2025 by The Freshmen Programming Contests 2025 jury (AAPJE in Amsterdam,
FPC in Delft, FYPC in Eindhoven, GAPC in Groningen, and in Mons). This work is licensed
under the Creative Commons Attribution-ShareAlike 4.0 International License.
https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/


Problem A: Array Annihilation 3

A Array Annihilation Time limit: 2s

Amy, actively annihilating an array.
Image generated using DALL·E

Already another algorithms assignment about arrays – Amy
has absolute aversion to them all! To avenge the amountful
assignments, she activates an Array Annihilator Pledging Justice
Executable, so all annoying arrays are abolished.

As the arrays are astronomically large, she agrees to only use one
type of operation repeatedly. For each operation, she chooses
two or more consecutive values in the array, and subtracts 1
from each of them. Given an array, is it possible to make all
values equal to 0 in some finite number of these operations?

As an example, consider the second sample input. The array
can be fully annihilated in four operations: first, decrement the
first two values (yielding [1, 3, 3]), then decrement the last two values twice (yielding [1, 1, 1]),
and finally decrement the entire array once (yielding [0, 0, 0]).

Input

The input consists of:

• One line with an integer n (1 ≤ n ≤ 5 · 105), the length of the array.

• One line with n integers a (1 ≤ a ≤ 109), the values in the array.

Output

If it is possible to make all values of the array equal to 0 in some finite number of operations,
output “possible”. If this is not possible, output “impossible”.

Sample Input 1 Sample Output 1
2
1 1

possible

Sample Input 2 Sample Output 2
3
2 4 3

possible

Sample Input 3 Sample Output 3
1
5

impossible

https://chatgpt.com/g/g-2fkFE8rbu-dall-e


Problem A: Array Annihilation 4

Sample Input 4 Sample Output 4
4
2 1 1 2

impossible

Sample Input 5 Sample Output 5
9
3 4 5 5 1 2 3 2 1

possible



Problem B: Bakfiets 5

B Bakfiets Time limit: 1s

Tim and his bakfiets, called Timmy.
© W.I.S.V. ‘Christiaan Huygens’,

photo by Maarten Weyns,
used with permission

Tim often needs to transport Fresh Yummy Pomegranate
Cocktails in his bakfiets for events of his student association.
For this, he has put a rectangular grid of a × b in his bakfiets so
each bottle fits neatly in a grid cell. The cocktails can be bought
in rectangular grid packaging of w × h, strapped together with
some plastic tape. However, these are not necessarily the same
dimensions as the grid in his bakfiets. Since Tim was smart
enough to make sure that his grid could fit all the bottles, he
can remove some of them from the plastic packaging, and put
them separately in his bakfiets. What is the minimum number
of bottles he needs to remove from the packaging to fit everything in his bakfiets?

As an example, consider the first sample case, visualized in Figure B.1. Tim will need to
remove three bottles from the plastic packaging and place these in the remaining space in the
bakfiets, in order to make everything fit.

Figure B.1: Visualization of the first sample case. The pink circles represent the bottles in plastic
packaging with dimensions w × h = 3 × 3 and the black squares represent the bakfiets with dimensions
a × b = 5 × 2.

Input

The input consists of:

• One line with four integers w, h, a, and b (1 ≤ w, h, a, b ≤ 109, w · h ≤ a · b). The
dimensions of the plastic packaging are w × h bottles, and the dimensions of the bakfiets
are a × b bottles.

Output

Output the minimum number of bottles Tim needs to remove from the packaging so that all
bottles fit in his bakfiets.

Sample Input 1 Sample Output 1
3 3 5 2 3



Problem B: Bakfiets 6

Sample Input 2 Sample Output 2
1 4 3 2 1

Input 3
1000000000 1000 1000000 1000000

Output 3
999000000000



Problem C: Characterithmetic 7

C Characterithmetic Time limit: 3s

Trippi Troppi trying to change
a string’s largest divisor.

Image generated using Canva AI

While solving one problem after the other in your favourite
programming contest (hopefully, the one you are at right now!),
you are suddenly faced with an Alternative Arithmetic Problem
for the Jury’s Entertainment. In this problem, you are not
calculating with numbers, but with strings.

For some arbitrary string t and integer k, we define t ⊙ k

(t times k) to be the string t concatenated k times. If t can
be written as t′ ⊙ k for some other string t′, we say that k is a
divisor of t. For example, the divisors of the string “abababab”
are 1, 2, and 4, because this string can be written as either
“abababab” ⊙ 1, or “abab” ⊙ 2, or “ab” ⊙ 4. Finally, we say
that a string is indivisible if its only divisor is 1: for example,
the string “abc” is indivisible.

You are given a string s of length n, that contains only the characters ‘a’, ‘b’, and ‘c’. For each
divisor d of n, you need to change some of the characters (to either ‘a’, ‘b’, or ‘c’), so that
the largest divisor of s becomes d. Find the minimum number of characters that need to be
changed in order to make this true.

As an example, consider the first sample input. There are three answers, one for each of the
divisors of 4:

• To make the largest divisor of “acac” be 1, we need to make sure that 2 is not a divisor.
We can change any character to make the string indivisible, e.g. “bcac”.

• The largest divisor of “acac” is already 2, so no characters need to change and the
answer is 0.

• To make the largest divisor 4, we need to make all characters equal. To do this, 2
characters need to be changed, yielding either “aaaa” or “cccc”.

Input

The input consists of:

• One line with an integer n (2 ≤ n ≤ 105), the length of your string.

• One line with a string s of length n, consisting only of characters ‘a’, ‘b’, and ‘c’.

Output

For each divisor d of n, in increasing order, output the minimum number of characters that
you need to change to make the largest divisor of s equal to d.

https://www.canva.com/ai-assistant/


Problem C: Characterithmetic 8

Sample Input 1 Sample Output 1
4
acac

1 0 2

Sample Input 2 Sample Output 2
6
abccba

0 2 4 4



Problem D: Delicious Trees 9

D Delicious Trees Time limit: 3s

The coatis climbing in their AVL
tree, deciding how to cut it.

CC BY-NC-ND 2.0 by Cloudtail
the Snow Leopard on Flickr

There is a Group of Adventurous, Playful Coatis living nearby a
magnificent fruit tree. It provides the band with delicious fruits
throughout the year. The coatis have maximized the tree’s potential
by keeping it in the shape of an AVL tree.1

The group has grown a lot over the years, and this single tree is
no longer enough to satisfy the hunger of the many coati kits. One
particularly smart coati, named Stefan, comes up with the idea to
apply the concept of parallellization to this tree: rather than having
one big tree, they should cut it into smaller trees, each of which can
then grow new fruit to feed the hungry band. Obviously, after the
big tree has been cut up, each of the smaller trees should be an AVL
tree. Find any way to cut the AVL tree into some predetermined
number of smaller AVL trees, or say this is impossible.

As an example, consider the first sample input, a fully balanced
binary tree with height 3. Cutting the edges to the parents of
vertices 2 and 3 produces three AVL trees: one tree containing only vertex 1, and two fully
balanced trees with height 2. Note that it is allowed that a tree is temporarily unbalanced in
between the first and the last cut.

Input

The input consists of:

• One line with two integers n and k (2 ≤ n, k ≤ 105), the number of vertices in the big
AVL tree and the number of smaller trees they want to end up with.

• n lines, the ith of which contains two integers l and r (0 ≤ l, r ≤ n), the indices of the
left and right child of the ith vertex, or 0 if that child is absent.

It is guaranteed that the input is a valid AVL tree rooted at vertex 1.

Output

If it is impossible to end up with k smaller AVL trees, output “impossible”.
Else, output k − 1 numbers between 2 and n (inclusive), indicating that the edges to the
parents of these k − 1 vertices should be cut, to get k AVL trees.

If there are multiple valid solutions, you may output any one of them.
1An AVL tree is a binary tree with the constraint that at each vertex, the difference between the two depths

of its children’s (possibly absent) subtrees is at most 1. Note that the depth of an absent subtree is equal to 0.

https://www.flickr.com/photos/57256462@N07/25924802465


Problem D: Delicious Trees 10

Sample Input 1 Sample Output 1
7 3
2 3
5 4
6 7
0 0
0 0
0 0
0 0

2 3

Sample Input 2 Sample Output 2
3 42
2 3
0 0
0 0

impossible



Problem E: Equation Extrapolation 11

E Equation Extrapolation Time limit: 1s

Pondering the complicated equations
governing the stock market.

CC BY-SA 2.0 by CollegeDegrees360
on Flickr, modified

Following recent events, you got hooked on predicting the stock
market and entered The Quant Cup, one of the most prestigious
trading competitions in the world, where participants must
predict the future of a simulated market. The challenge this
year is more daunting than ever before, but after experimenting
with the data provided by the organizers, you have stumbled upon
a groundbreaking flaw. The data reveals that the asset prices
in the simulation do not follow any random pattern. Instead,
they seem to follow a hidden polynomial function P (x), where x

represents a variable that influences the stock price. Figuring out
this polynomial’s coefficients would give you an unfair advantage
in the competition, and you would definitely win. However,
computing P (x) is a tedious and time consuming task, and the competition runs for just long
enough so that you can make 9 such computations. Can you decode the hidden polynomial
and take the lead in the competition?

More formally, there exists a hidden polynomial P (x) = a0 + a1x + a2x2 + · · · + adxd of
degree d (0 ≤ d ≤ 10) with integer coefficients ai (0 ≤ ai ≤ 9 for each i). Find the original
polynomial and print its d + 1 coefficients. To do this, you may query at most 9 integer values
x (−106 ≤ x ≤ 106), and for each query, you will receive the value of P (x).

Interaction

This is an interactive problem. Your submission will be run against an interactor, which
reads from the standard output of your submission and writes to the standard input of your
submission. This interaction needs to follow a specific protocol:

Your program should make at most 9 queries to find the original polynomial. The polynomial’s
degree is not provided up front, it must be inferred from the queries. Each query is made by
printing one line of the form “? x” with some integer x (−106 ≤ x ≤ 106). The interactor
will respond with the integer value of P (x).

When you have determined all of the coefficients of the original polynomial, print one line of the
form “! a0 a1 . . . ad”, where ai is the coefficient of the xi term in the original polynomial,
after which the interaction will stop. Printing the answer does not count as a query.

The interactor is not adaptive: the coefficients are fixed up front, and do not depend on your
queries.

Make sure you flush the buffer after each write.

A testing tool is provided to help you develop your solution.

Using more than 9 queries will result in a wrong answer.

https://www.flickr.com/photos/83633410@N07/7658298768


Problem E: Equation Extrapolation 12

Read Sample Interaction 1 Write
? 4

313

? 7

1534

! 1 2 3 4

Read Sample Interaction 2 Write
? 2

0

! 0

Read Sample Interaction 3 Write
? 467

1094649

! 1 9 5



Problem F: Frog and Princess 13

F Frog and Princess Time limit: 2s

Public Domain by Paul Friedrich
Meyerheim on Wikimedia Commons

In the distant land of Glimmerbrook, there once lived a noble
prince, brave of heart. Alas, his fate took a cruel turn when he
crossed paths with an ancient and vengeful wizard. With a flick
of his staff, the wizard cast a dreadful curse – transforming the
prince into a frog, slimy and green. The curse was no ordinary
spell, but part of an age-old magical trial known as the Geometric
Arcane Puzzle of Coordinates – a test designed by the old wizards
to trap the bold and free-spirited. Now, bound by enchantment,
the frog-prince must reach the princess – for only her touch can
break the curse and restore his true form.

The magic has twisted his very legs: he may leap no more than n

times. The length of each jump (measured in Euclidean distance)
is strictly dictated by the ancient spell: on the ith jump, the frog
should jump a distance of ai, no more, no less. If he can land at
the princess’s side before his jumps run out, the curse will shatter
instantly (even if some jumps remain) and he shall be free. But should he fall short, he will
remain a frog forevermore.

x

y

1

2

3

F

P

x

y

1

2

3

F

P

x

y

1
2

3

F

P

x

y

1

2

F

P

Figure F.1: Some ways that the frog can jump to the princess in the first sample.

Input

The input consists of:

• One line with an integer n (1 ≤ n ≤ 4 · 105), the number of jumps that the frog can
make.

• One line with four integers xf , yf , xp, and yp (−109 ≤ xf , yf , xp, yp ≤ 109), the
coordinates (xf , yf ) of the starting position of the frog, and the coordinates (xp, yp) of
the princess.

• One line with n integers a1, . . . , an (1 ≤ ai ≤ 109 for each i, and ∑n
i=1 ai ≤ 2 · 109),

where ai is the length of the ith jump of the frog.

It is guaranteed that the coordinates of the frog and those of the princess are not the same.

https://commons.wikimedia.org/wiki/File:GmimmTheFrogPrince.gif


Problem F: Frog and Princess 14

Output

Output “yes” if the frog can jump to the exact position of the princess, and “no” otherwise.

Sample Input 1 Sample Output 1
3
0 0 2 2
1 2 3

yes

Sample Input 2 Sample Output 2
2
0 0 -2 -2
1 1

no

Sample Input 3 Sample Output 3
3
0 0 2 2
6 1 2

no

Sample Input 4 Sample Output 4
1
0 1 1000000000 0
1000000000

no



Problem G: Gambler’s Dilemma 15

G Gambler’s Dilemma Time limit: 1s

A beginning poker player that
accidentally went all-in. CC BY 2.0

by cyOFdevelin fame on Flickr

You are new to poker and want to know when to fold before the
flop. The flop refers to the turning of the first three cards on
the table, which happens after you have received two cards in
your hand. After receiving your two cards, you need to decide
whether you want to keep them and place a bet or to fold (which
means to step out of the game without placing a bid).

There are complicated tables for this, which also depend on how
many people are sitting between you and the dealer, but you
have decided on the following heuristic.2 You keep your two
initial cards and place a bet if they have one of the following
properties:

• They are a pair (two cards of the same rank), but not a pair of 2s or a pair of 3s.

• The two cards are of consecutive ranks, and each is 9 or higher.

• The two cards are of the same suit, and at least one card is a Queen or higher.

• Each card is a Jack or higher.

If your two initial cards do not have any of these properties, you fold before the flop.

Note that the Ace ranks higher than the King, and not lower than the 2.

Input

The input consists of:

• One line with two different cards, each of which consists of one character
r ∈ {2,3,4,5,6,7,8,9,T,J,Q,K,A} (denoting the rank: a number, Ten, Jack, Queen,
King, or Ace) and one character s ∈ {C,D,H,S} (denoting the suit: clubs, diamonds,
hearts, or spades).

Output

Output “yes” if you keep your two initial cards, and “no” if you fold before the flop.

Sample Input 1 Sample Output 1
TD TS yes

2We deny any responsibility for using this heuristic in practice.

https://www.flickr.com/photos/of_hueyd/5185813636/


Problem G: Gambler’s Dilemma 16

Sample Input 2 Sample Output 2
8D 9D no

Sample Input 3 Sample Output 3
5H 3S no



Problem H: Hopelessly Hungover 17

H Hopelessly Hungover Time limit: 1s

Beer and studying do not
go great together.
Pexels License by

seymasungr on Pexels

First-year student Bob needs to learn n facts for an online exam. Currently,
he knows none. The exam can be taken at any time, even during weekends,
but due to the surveillance software, it is impossible to cheat. The grading
is quite harsh and requires that he knows all the n facts to pass.

On weekdays, Bob studies diligently and can learn at most k facts per
day. On weekends, there are the Freshmen Party Committee events,
meticulously planned and impossible to miss, where he forgets m facts
per day due to sheer excitement. Of course, when the number of facts
Bob knows is less than m, he will forget all the facts during the party
and wakes up the next day knowing none. Starting in the morning of
some given day of the week, determine how many days it takes until he
first knows all n facts, or determine that he never learns all n facts.

As an example, consider the first sample input, where Bob needs to learn
14 facts. He can learn 1 fact every weekday and forgets 1 fact per day
in the weekend. He starts off knowing 0 facts on a Monday morning. Bob learns 1 fact
during the day. He does so on all the 5 weekdays, so on Saturday morning he knows 5 facts.
Unfortunately, he forgets a fact on both Saturday and Sunday, so he starts the second week
on Monday morning knowing 3 facts. This keeps going in the span of 4 weeks. On the Friday
of the last week, he knows all the 14 facts so he can start his online exam in the evening. This
turns out to be exactly 26 days, accounting for the starting Monday and final Friday as well.

Input

The input consists of:

• One line with four integers n, k, m, and d (1 ≤ n, k, m ≤ 1000, 1 ≤ d ≤ 7), where: n

is the total number of facts that Bob must learn, k is the number of facts learned on
a weekday, m is the number of facts forgotten on a weekend day, and d represents the
current day of the week (where 1 corresponds to Monday and 7 corresponds to Sunday).

Output

Output the number of days (including the current day) that elapse before Bob first knows all
n facts. Note that the last day that Bob still needs to study should be included, although he
will know all the facts on the same day in the evening and can start his exam immediately. If
Bob can never learn all facts, output “impossible”.

Sample Input 1 Sample Output 1
14 1 1 1 26

https://www.pexels.com/photo/cozy-study-nook-with-drink-tablet-and-book-31373688/


Problem H: Hopelessly Hungover 18

Sample Input 2 Sample Output 2
15 1 10 4 impossible

Sample Input 3 Sample Output 3
10 2 20 2 11



Problem I: Interesting Mountains 19

I Interesting Mountains Time limit: 2s

The Vestrahorn in Iceland is an interesting formation.
Image by tawatchai07 on Freepik, modified

On your holiday trip to the mountains, you are
amazed by the high quality of your Flashy Yellow
Panorama Camera. After shooting a couple of
nice photos during your hike, you decide to send
the nicest one to your best friend. Sure enough,
they immediately reply that they see all kinds of
fancy patterns – but they are not talking about
the beautiful snow-capped mountains: they have
a more abstract view of the photo. . .

Since the heights of the n mountains in the panorama photo are unique, you can view these
heights as a permutation of all numbers between 1 and n (inclusive). Your friend thinks that
a formation of three (not necessarily consecutive) mountains is interesting, when the first
mountain is higher than the third mountain, and the third mountain is higher than the second
mountain. In other words, three mountains with indices i, j, and k (1 ≤ i < j < k ≤ n)
and respective heights hi, hj , and hk are interesting, if and only if hi > hk > hj . How many
interesting formations can you find in a given panorama photo?

As an example, consider the first sample input: only the tuples with indices (1, 3, 5) and
(2, 3, 5) are interesting formations.

Input

The input consists of:

• One line with an integer n (3 ≤ n ≤ 3 · 105), the number of mountains in the photo.

• One line with n integers h1, . . . , hn (1 ≤ hi ≤ n for each i), the heights of the mountains
in the photo. It is guaranteed all values of hi are unique.

Output

Output the number of interesting formations in the panorama photo.

Sample Input 1 Sample Output 1
5
3 4 1 5 2

2

Sample Input 2 Sample Output 2
3
3 1 2

1

https://www.freepik.com/free-photo/vestrahorn-mountains-stokksnes-iceland_11769004.htm


Problem I: Interesting Mountains 20

Sample Input 3 Sample Output 3
3
2 1 3

0

Sample Input 4 Sample Output 4
11
5 9 10 11 1 2 3 4 6 7 8

69



Problem J: Jumbled Keys 21

J Jumbled Keys Time limit: 2s

Image by u/ROD_OF_AGES on
r/MechanicalKeyboards

Georgi is a freshman, who just started his Computer Science
studies in The Netherlands. Being very ambitious, he
already looked at last year’s exam for the Introduction
to Programming course, and was concerned by how little
time he had to do it. To help him complete his exam on
time, Georgi has devised a brilliant new way to type – the
Finger Placement Configuration (FPC). The FPC is just
a new keyboard layout, where pressing any letter on his
QWERTY keyboard results in a unique English letter being
input. Every lowercase English letter can be typed and every key only inputs one letter.

After a rigorous day of studying and practicing with the new iteration of the keyboard layout,
Georgi decides to log into one of his favourite games: Warstone – Heroes of Hearthcraft.
However, he has forgotten his password. He had written his password into his password
manager software, but made a mistake when doing so: he had typed the password thinking
that the keyboard was in QWERTY mode, but the FPC layout was still enabled! The password
can probably be recovered knowing the configuration of the keys in the FPC layout, but, being
exhausted, he has completely forgotten that too. The only tool he can use is his training sheet.
Each entry in the training sheet consists of a sequence of keys to press on the FPC layout,
followed by the resulting word. On the verge of giving up, he desparately asks you for help in
figuring out what his password was.

Input

The input consists of:

• One line with a single integer n (1 ≤ n ≤ 1000), the number of training words.

• n lines, each with two strings of equal length: the first is the sequence of keys that need
to be pressed to enter a word using the FPC layout, and the second is the resulting
word.

• One word, the sequence of keys that need to be pressed to obtain the password using
the FPC layout.

Each word in the input has a length between 1 and 1000 characters and only consists of
English lowercase characters (a-z).

Output

Output Georgi’s password.

It is guaranteed that it is possible to uniquely reconstruct the original password based on the
data from the training sheet.

https://www.reddit.com/r/MechanicalKeyboards/comments/td19ku/blank_keycaps_nah_scrambled_keycaps/


Problem J: Jumbled Keys 22

Sample Input 1 Sample Output 1
2
abc acb
cbde bced
abcde

acbed

Sample Input 2 Sample Output 2
1
abcdefghij amlvsioked
eabgcidehf

samolevski

Input 3
1
abcdefghijklmnopqrstuvwxy abcdefghijklmnopqrstuvwxz
abcdefghijklmnopqrstuvwxyz

Output 3
abcdefghijklmnopqrstuvwxzy



Problem K: Kite Construction 23

K Kite Construction Time limit: 4s

Neatly folded canvases and paint, waiting
to be transformed into colourful kites.

Image generated using DALL·E 3

Summer is coming up, and you and your friends love to fly
kites at the beach. You plan to make n new kites this year,
and paint them in some range of colours. For this, you already
have a practically unlimited amount of canvas and paint, but
the limiting factor is where you can put the painted kites
while they dry.

To hang out the kites for drying, you found a square field
with side length ℓ. On each of the four sides of the field, there
are n poles. The corners of the field are at coordinates (0, 0),
(ℓ, 0), (0, ℓ), and (ℓ, ℓ), and you know the coordinates of the
poles in this coordinate system. There are no poles exactly
on a corner of the square, and no poles inside the square.

Since you are planning to make as many kites as there are
poles on each side of the field, and each kite has four corners, you want to attach each of the
corners of each kite to a pole from each of the four sides. Additionally, each pole should be
attached to exactly one corner of a kite. Of course, larger kites are more fun, so you want to
maximize the total area of the kites.

Although you vaguely remember from geometry class that a kite has some special properties,
you decide to use your artistic freedom and just allow any (convex) quadrilateral as the shape
of your kites.

Figure K.1: Visualization of the second sample input, where the grey square indicates the 6 × 6 square
field, the black dots indicate the poles, and the coloured rectangles indicate a possible placement of the
kites. Note that this is not the configuration that maximizes the total area of the kites (the red kite
has an area of 16, the blue kite has an area of 19.5, for a total area of 35.5).

https://openai.com/index/dall-e-3/


Problem K: Kite Construction 24

Input

The input consists of:

• One line with two integers n and ℓ (1 ≤ n ≤ 105, 1 ≤ ℓ ≤ 106), the number of kites you
want to make and the side length of the square field.

• 4n lines, each with two integers x and y (0 ≤ x, y ≤ ℓ), the coordinates of the poles on
the sides of the square.

It is guaranteed that all poles lie on the boundary of the square and n poles lie on each side of
the square, and no poles lie on a corner of the square. It is also guaranteed that no two poles
are at the same location.

Output

Output the maximum total area of the n kites.

Your answer should have an absolute or relative error of at most 10−9.

Sample Input 1 Sample Output 1
1 4
2 4
0 2
2 0
4 2

8

Sample Input 2 Sample Output 2
2 6
0 3
0 1
6 2
4 0
3 6
6 4
1 6
5 0

41.5




	Problems
	Array Annihilation
	Bakfiets
	Characterithmetic
	Delicious Trees
	Equation Extrapolation
	Frog and Princess
	Gambler's Dilemma
	Hopelessly Hungover
	Interesting Mountains
	Jumbled Keys
	Kite Construction


