
Freshmen Programming Contests 2025

Solutions presentation

By the Freshmen Programming Contests 2025 jury for:
• AAPJE in Amsterdam
• FPC in Delft
• FYPC in Eindhoven
• GAPC in Groningen
• Contest in Mons

May 3, 2025

GAPC 2025

Please do not post the problems online

Other universities will have their contests in the coming weeks.

Please, do not post/discuss the problems online before

Saturday 17 May 2025 at 17:00

A: Array Annihilation
Problem author: Leon van der Waal

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

A: Array Annihilation
Problem author: Leon van der Waal

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!

Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

A: Array Annihilation
Problem author: Leon van der Waal

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

A: Array Annihilation
Problem author: Leon van der Waal

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

A: Array Annihilation
Problem author: Leon van der Waal

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

B: Bakfiets
Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.

Observation 1: The bottle packaging can be in 2 possible orientations.
Observation 2: You can maximally have 1018 bottles, hence we need 64-bit integers.

Solution: Compute w · h − max (min (w , a) · min (h, b), min (w , b) · min (h, a)).
Running time: O(1)

Statistics: . . . submissions, . . . accepted, . . . unknown

B: Bakfiets
Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.
Observation 1: The bottle packaging can be in 2 possible orientations.

Observation 2: You can maximally have 1018 bottles, hence we need 64-bit integers.
Solution: Compute w · h − max (min (w , a) · min (h, b), min (w , b) · min (h, a)).

Running time: O(1)

Statistics: . . . submissions, . . . accepted, . . . unknown

B: Bakfiets
Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.
Observation 1: The bottle packaging can be in 2 possible orientations.
Observation 2: You can maximally have 1018 bottles, hence we need 64-bit integers.

Solution: Compute w · h − max (min (w , a) · min (h, b), min (w , b) · min (h, a)).
Running time: O(1)

Statistics: . . . submissions, . . . accepted, . . . unknown

B: Bakfiets
Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.
Observation 1: The bottle packaging can be in 2 possible orientations.
Observation 2: You can maximally have 1018 bottles, hence we need 64-bit integers.

Solution: Compute w · h − max (min (w , a) · min (h, b), min (w , b) · min (h, a)).

Running time: O(1)

Statistics: . . . submissions, . . . accepted, . . . unknown

B: Bakfiets
Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.
Observation 1: The bottle packaging can be in 2 possible orientations.
Observation 2: You can maximally have 1018 bottles, hence we need 64-bit integers.

Solution: Compute w · h − max (min (w , a) · min (h, b), min (w , b) · min (h, a)).
Running time: O(1)

Statistics: . . . submissions, . . . accepted, . . . unknown

B: Bakfiets
Problem author: Jeroen Op de Beek

Problem: Minimize the area of one rectangle that cannot overlap with another.
Observation 1: The bottle packaging can be in 2 possible orientations.
Observation 2: You can maximally have 1018 bottles, hence we need 64-bit integers.

Solution: Compute w · h − max (min (w , a) · min (h, b), min (w , b) · min (h, a)).
Running time: O(1)

Statistics: . . . submissions, . . . accepted, . . . unknown

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!

Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

C: Characterithmetic
Problem author: Jeroen Op de Beek

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

D: Delicious Trees
Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.
Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest

of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.
Observation 3: Assuming we can split the big tree into n trees of size 1,

the answer is only “impossible” when k > n.
Solution: First calculate the depth of each vertex in the tree using BFS/DFS,

then remove vertices one-by-one from largest to smallest depth.
Red herring: The first sample cuts off larger AVL trees on purpose.

Running time: Dominated by sorting by depth: O(n log n).

Statistics: . . . submissions, . . . accepted, . . . unknown

D: Delicious Trees
Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.

Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest
of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.

Observation 3: Assuming we can split the big tree into n trees of size 1,
the answer is only “impossible” when k > n.

Solution: First calculate the depth of each vertex in the tree using BFS/DFS,
then remove vertices one-by-one from largest to smallest depth.

Red herring: The first sample cuts off larger AVL trees on purpose.
Running time: Dominated by sorting by depth: O(n log n).

Statistics: . . . submissions, . . . accepted, . . . unknown

D: Delicious Trees
Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.
Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest

of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.

Observation 3: Assuming we can split the big tree into n trees of size 1,
the answer is only “impossible” when k > n.

Solution: First calculate the depth of each vertex in the tree using BFS/DFS,
then remove vertices one-by-one from largest to smallest depth.

Red herring: The first sample cuts off larger AVL trees on purpose.
Running time: Dominated by sorting by depth: O(n log n).

Statistics: . . . submissions, . . . accepted, . . . unknown

D: Delicious Trees
Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.
Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest

of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.
Observation 3: Assuming we can split the big tree into n trees of size 1,

the answer is only “impossible” when k > n.

Solution: First calculate the depth of each vertex in the tree using BFS/DFS,
then remove vertices one-by-one from largest to smallest depth.

Red herring: The first sample cuts off larger AVL trees on purpose.
Running time: Dominated by sorting by depth: O(n log n).

Statistics: . . . submissions, . . . accepted, . . . unknown

D: Delicious Trees
Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.
Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest

of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.
Observation 3: Assuming we can split the big tree into n trees of size 1,

the answer is only “impossible” when k > n.
Solution: First calculate the depth of each vertex in the tree using BFS/DFS,

then remove vertices one-by-one from largest to smallest depth.

Red herring: The first sample cuts off larger AVL trees on purpose.
Running time: Dominated by sorting by depth: O(n log n).

Statistics: . . . submissions, . . . accepted, . . . unknown

D: Delicious Trees
Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.
Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest

of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.
Observation 3: Assuming we can split the big tree into n trees of size 1,

the answer is only “impossible” when k > n.
Solution: First calculate the depth of each vertex in the tree using BFS/DFS,

then remove vertices one-by-one from largest to smallest depth.
Red herring: The first sample cuts off larger AVL trees on purpose.

Running time: Dominated by sorting by depth: O(n log n).

Statistics: . . . submissions, . . . accepted, . . . unknown

D: Delicious Trees
Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.
Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest

of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.
Observation 3: Assuming we can split the big tree into n trees of size 1,

the answer is only “impossible” when k > n.
Solution: First calculate the depth of each vertex in the tree using BFS/DFS,

then remove vertices one-by-one from largest to smallest depth.
Red herring: The first sample cuts off larger AVL trees on purpose.

Running time: Dominated by sorting by depth: O(n log n).

Statistics: . . . submissions, . . . accepted, . . . unknown

D: Delicious Trees
Problem author: Jeroen Op de Beek

Problem: Find any way to cut the AVL tree into some predetermined number of smaller AVL
trees, or say this is impossible.

Observation 1: An AVL tree with only one vertex, is also an AVL tree.
Observation 2: Removing the deepest vertex from the tree can only decrease the depth of the largest

of the two subtrees of any ancestor, so this will never introduce imbalanced vertices.
Observation 3: Assuming we can split the big tree into n trees of size 1,

the answer is only “impossible” when k > n.
Solution: First calculate the depth of each vertex in the tree using BFS/DFS,

then remove vertices one-by-one from largest to smallest depth.
Red herring: The first sample cuts off larger AVL trees on purpose.

Running time: Dominated by sorting by depth: O(n log n).

Statistics: . . . submissions, . . . accepted, . . . unknown

E: Equation Extrapolation
Problem author: Jeroen Op de Beek

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

E: Equation Extrapolation
Problem author: Jeroen Op de Beek

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!

Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

E: Equation Extrapolation
Problem author: Jeroen Op de Beek

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

E: Equation Extrapolation
Problem author: Jeroen Op de Beek

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

E: Equation Extrapolation
Problem author: Jeroen Op de Beek

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

F: Frog and Princess
Problem author: Wietze Koops

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

F: Frog and Princess
Problem author: Wietze Koops

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!

Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

F: Frog and Princess
Problem author: Wietze Koops

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

F: Frog and Princess
Problem author: Wietze Koops

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

F: Frog and Princess
Problem author: Wietze Koops

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

G: Gambler’s Dilemma
Problem author: Wietze Koops

Problem: Determine whether two playing cards have any of the four given properties.

Solution: For each property, check whether the cards match it.
Pitfall: Be careful of off-by-one errors when calculating the rank of a card.

Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

G: Gambler’s Dilemma
Problem author: Wietze Koops

Problem: Determine whether two playing cards have any of the four given properties.
Solution: For each property, check whether the cards match it.

Pitfall: Be careful of off-by-one errors when calculating the rank of a card.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

G: Gambler’s Dilemma
Problem author: Wietze Koops

Problem: Determine whether two playing cards have any of the four given properties.
Solution: For each property, check whether the cards match it.

Pitfall: Be careful of off-by-one errors when calculating the rank of a card.

Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

G: Gambler’s Dilemma
Problem author: Wietze Koops

Problem: Determine whether two playing cards have any of the four given properties.
Solution: For each property, check whether the cards match it.

Pitfall: Be careful of off-by-one errors when calculating the rank of a card.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

G: Gambler’s Dilemma
Problem author: Wietze Koops

Problem: Determine whether two playing cards have any of the four given properties.
Solution: For each property, check whether the cards match it.

Pitfall: Be careful of off-by-one errors when calculating the rank of a card.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

H: Hopelessly Hungover
Problem author: Wietze Koops

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

H: Hopelessly Hungover
Problem author: Wietze Koops

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!

Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

H: Hopelessly Hungover
Problem author: Wietze Koops

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

H: Hopelessly Hungover
Problem author: Wietze Koops

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

H: Hopelessly Hungover
Problem author: Wietze Koops

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

I: Interesting Mountains
Problem author: Mihail Bankov

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

I: Interesting Mountains
Problem author: Mihail Bankov

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!

Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

I: Interesting Mountains
Problem author: Mihail Bankov

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

I: Interesting Mountains
Problem author: Mihail Bankov

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

I: Interesting Mountains
Problem author: Mihail Bankov

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

J: Jumbled Keys
Problem author: Arnoud van der Leer

Problem: Decipher a message, using a series of mapped words.

Solution: Use a map! Process every pair of words, and map every letter in the first word to the
letter it corresponds to in the second word.

Edge case: If 25 letters are mapped, the 26th letter maps to the only letter that has no other
letter mapped to it.

Running time: O(n · ℓ), where ℓ is the average length of the words.

Statistics: . . . submissions, . . . accepted, . . . unknown

J: Jumbled Keys
Problem author: Arnoud van der Leer

Problem: Decipher a message, using a series of mapped words.
Solution: Use a map! Process every pair of words, and map every letter in the first word to the

letter it corresponds to in the second word.

Edge case: If 25 letters are mapped, the 26th letter maps to the only letter that has no other
letter mapped to it.

Running time: O(n · ℓ), where ℓ is the average length of the words.

Statistics: . . . submissions, . . . accepted, . . . unknown

J: Jumbled Keys
Problem author: Arnoud van der Leer

Problem: Decipher a message, using a series of mapped words.
Solution: Use a map! Process every pair of words, and map every letter in the first word to the

letter it corresponds to in the second word.
Edge case: If 25 letters are mapped, the 26th letter maps to the only letter that has no other

letter mapped to it.

Running time: O(n · ℓ), where ℓ is the average length of the words.

Statistics: . . . submissions, . . . accepted, . . . unknown

J: Jumbled Keys
Problem author: Arnoud van der Leer

Problem: Decipher a message, using a series of mapped words.
Solution: Use a map! Process every pair of words, and map every letter in the first word to the

letter it corresponds to in the second word.
Edge case: If 25 letters are mapped, the 26th letter maps to the only letter that has no other

letter mapped to it.
Running time: O(n · ℓ), where ℓ is the average length of the words.

Statistics: . . . submissions, . . . accepted, . . . unknown

J: Jumbled Keys
Problem author: Arnoud van der Leer

Problem: Decipher a message, using a series of mapped words.
Solution: Use a map! Process every pair of words, and map every letter in the first word to the

letter it corresponds to in the second word.
Edge case: If 25 letters are mapped, the 26th letter maps to the only letter that has no other

letter mapped to it.
Running time: O(n · ℓ), where ℓ is the average length of the words.

Statistics: . . . submissions, . . . accepted, . . . unknown

K: Kite Construction
Problem author: Jeroen Op de Beek

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

K: Kite Construction
Problem author: Jeroen Op de Beek

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!

Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

K: Kite Construction
Problem author: Jeroen Op de Beek

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.

Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

K: Kite Construction
Problem author: Jeroen Op de Beek

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

K: Kite Construction
Problem author: Jeroen Op de Beek

Problem: Print 4√
n with sufficiently many digits.

Naive solution: Do something stupid. O(2n) is too slow!
Smart solution: Just compute the answer.
Running time: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

Random facts

Jury work

• 265 commits (last year: 447)

• 533 secret test cases (last year: 357)
• 121 accepted jury/proofreader solutions (last year: 120)
• The minimum1 number of lines the jury needed to solve all problems is

2 + 1 + 6 + 5 + 1 + 5 + 2 + 2 + 6 + 3 + 6 = 39

On average 3.5 lines per problem, down from 6.0 last year

1After codegolfing

Random facts

Jury work

• 265 commits (last year: 447)
• 533 secret test cases (last year: 357)

• 121 accepted jury/proofreader solutions (last year: 120)
• The minimum1 number of lines the jury needed to solve all problems is

2 + 1 + 6 + 5 + 1 + 5 + 2 + 2 + 6 + 3 + 6 = 39

On average 3.5 lines per problem, down from 6.0 last year

1After codegolfing

Random facts

Jury work

• 265 commits (last year: 447)
• 533 secret test cases (last year: 357)
• 121 accepted jury/proofreader solutions (last year: 120)

• The minimum1 number of lines the jury needed to solve all problems is

2 + 1 + 6 + 5 + 1 + 5 + 2 + 2 + 6 + 3 + 6 = 39

On average 3.5 lines per problem, down from 6.0 last year

1After codegolfing

Random facts

Jury work

• 265 commits (last year: 447)
• 533 secret test cases (last year: 357)
• 121 accepted jury/proofreader solutions (last year: 120)
• The minimum1 number of lines the jury needed to solve all problems is

2 + 1 + 6 + 5 + 1 + 5 + 2 + 2 + 6 + 3 + 6 = 39

On average 3.5 lines per problem, down from 6.0 last year

1After codegolfing

Thanks to the proofreaders:

• Arnoud van der Leer (TU Delft)
• Dany Sluijk (TU Delft)
• Davina van Meer (Delft)
• Mattia Marziali (RU Groningen)
• Michael Zündorf

(KIT Karlsruhe / NWERC jury)

• Pavel Kunyavskiy (JetBrains Amsterdam)
• Pierre Vandenhove (UMons)
• Thomas Verwoerd

(TU Delft, Hero)
• Thore Husfeldt (ITU Copenhagen / BAPC Jury)
• Wendy Yi (KIT Karlsruhe / NWERC jury)

Thanks to the Jury for the
Freshmen Programming Contests:

• Alice Sayutina (VU Amsterdam)
• Angel Karchev (TU Delft)
• Bálint Kollmann (TU Delft)
• Jeroen Op de Beek (TU Delft)
• Leon van der Waal (TU Delft)

• Liudas Staniulis (VU Amsterdam)
• Maarten Sijm (TU Delft)
• Mihail Bankov (TU Delft)
• Moham Balfakeih (TU Delft)
• Wietze Koops (Radboud Nijmegen / RU Groningen)

2 25 FPC 2025
GAPC 2025

Open online contest

Want to solve the problems you could not finish?
Or have friends that like to solve algorithmic problems?

https://fpcs2025.bapc.eu/

Saturday 17 May 2025 13:00–17:00

Please, do not post/discuss the problems online before this time!

Future contest fun

Excited to participate in the next contest?

Register for the BAPC Preliminaries in September!

Want to organize these contests?

Join the organizing committee!

Want to create programming problems for FPCs next year?

Either join the committee, or contact Maarten Sijm

